--- tags: - generated_from_trainer metrics: - precision - recall - accuracy model-index: - name: train results: [] --- # train This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co./aubmindlab/bert-base-arabertv02) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9948 - Macro F1: 0.7856 - Precision: 0.7820 - Recall: 0.7956 - Kappa: 0.6940 - Accuracy: 0.7956 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 128 - seed: 25 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Macro F1 | Precision | Recall | Kappa | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 101 | 1.1562 | 0.6031 | 0.5561 | 0.7044 | 0.4967 | 0.7044 | | No log | 2.0 | 203 | 0.9119 | 0.7151 | 0.7107 | 0.7672 | 0.6236 | 0.7672 | | No log | 3.0 | 304 | 0.8493 | 0.7280 | 0.7139 | 0.7734 | 0.6381 | 0.7734 | | No log | 4.0 | 406 | 0.8087 | 0.7455 | 0.7632 | 0.7648 | 0.6421 | 0.7648 | | 0.9431 | 5.0 | 507 | 0.7735 | 0.7779 | 0.7741 | 0.7931 | 0.6858 | 0.7931 | | 0.9431 | 6.0 | 609 | 0.8201 | 0.7753 | 0.7735 | 0.7869 | 0.6797 | 0.7869 | | 0.9431 | 7.0 | 710 | 0.8564 | 0.7886 | 0.7883 | 0.8017 | 0.7004 | 0.8017 | | 0.9431 | 8.0 | 812 | 0.8712 | 0.7799 | 0.7754 | 0.7894 | 0.6854 | 0.7894 | | 0.9431 | 9.0 | 913 | 0.9142 | 0.7775 | 0.7751 | 0.7869 | 0.6811 | 0.7869 | | 0.2851 | 10.0 | 1015 | 0.9007 | 0.7820 | 0.7764 | 0.7943 | 0.6913 | 0.7943 | | 0.2851 | 11.0 | 1116 | 0.9425 | 0.7859 | 0.7825 | 0.7956 | 0.6940 | 0.7956 | | 0.2851 | 12.0 | 1218 | 0.9798 | 0.7815 | 0.7797 | 0.7906 | 0.6869 | 0.7906 | | 0.2851 | 13.0 | 1319 | 0.9895 | 0.7895 | 0.7860 | 0.7993 | 0.7003 | 0.7993 | | 0.2851 | 14.0 | 1421 | 0.9872 | 0.7854 | 0.7813 | 0.7943 | 0.6935 | 0.7943 | | 0.1273 | 14.93 | 1515 | 0.9948 | 0.7856 | 0.7820 | 0.7956 | 0.6940 | 0.7956 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Tokenizers 0.13.3