RufusRubin777
commited on
Update modeling_GOT.py
Browse files- modeling_GOT.py +882 -880
modeling_GOT.py
CHANGED
@@ -1,881 +1,883 @@
|
|
1 |
-
from transformers import Qwen2Config, Qwen2Model, Qwen2ForCausalLM, StoppingCriteria, TextStreamer
|
2 |
-
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
3 |
-
from typing import List, Optional, Tuple, Union
|
4 |
-
from transformers.cache_utils import Cache
|
5 |
-
import requests
|
6 |
-
from PIL import Image
|
7 |
-
from io import BytesIO
|
8 |
-
import torch
|
9 |
-
import torch.nn as nn
|
10 |
-
from torch.nn import CrossEntropyLoss
|
11 |
-
from .got_vision_b import build_GOT_vit_b
|
12 |
-
from torchvision import transforms
|
13 |
-
from torchvision.transforms.functional import InterpolationMode
|
14 |
-
import dataclasses
|
15 |
-
###
|
16 |
-
|
17 |
-
DEFAULT_IMAGE_TOKEN = "<image>"
|
18 |
-
DEFAULT_IMAGE_PATCH_TOKEN = '<imgpad>'
|
19 |
-
DEFAULT_IM_START_TOKEN = '<img>'
|
20 |
-
DEFAULT_IM_END_TOKEN = '</img>'
|
21 |
-
|
22 |
-
from enum import auto, Enum
|
23 |
-
class SeparatorStyle(Enum):
|
24 |
-
"""Different separator style."""
|
25 |
-
SINGLE = auto()
|
26 |
-
TWO = auto()
|
27 |
-
MPT = auto()
|
28 |
-
|
29 |
-
|
30 |
-
@dataclasses.dataclass
|
31 |
-
class Conversation:
|
32 |
-
"""A class that keeps all conversation history."""
|
33 |
-
system: str
|
34 |
-
roles: List[str]
|
35 |
-
messages: List[List[str]]
|
36 |
-
offset: int
|
37 |
-
sep_style: SeparatorStyle = SeparatorStyle.SINGLE
|
38 |
-
sep: str = "<|im_end|>"
|
39 |
-
sep2: str = None
|
40 |
-
version: str = "Unknown"
|
41 |
-
|
42 |
-
skip_next: bool = False
|
43 |
-
|
44 |
-
def get_prompt(self):
|
45 |
-
if self.sep_style == SeparatorStyle.SINGLE:
|
46 |
-
ret = self.system + self.sep + '\n'
|
47 |
-
for role, message in self.messages:
|
48 |
-
if message:
|
49 |
-
if type(message) is tuple:
|
50 |
-
message, _, _ = message
|
51 |
-
ret += role + ": " + message + self.sep
|
52 |
-
else:
|
53 |
-
ret += role + ":"
|
54 |
-
return ret
|
55 |
-
elif self.sep_style == SeparatorStyle.TWO:
|
56 |
-
seps = [self.sep, self.sep2]
|
57 |
-
ret = self.system + seps[0]
|
58 |
-
for i, (role, message) in enumerate(self.messages):
|
59 |
-
if message:
|
60 |
-
if type(message) is tuple:
|
61 |
-
message, _, _ = message
|
62 |
-
ret += role + ": " + message + seps[i % 2]
|
63 |
-
else:
|
64 |
-
ret += role + ":"
|
65 |
-
return ret
|
66 |
-
if self.sep_style == SeparatorStyle.MPT:
|
67 |
-
if self.system:
|
68 |
-
ret = self.system + self.sep
|
69 |
-
else:
|
70 |
-
ret = ''
|
71 |
-
for role, message in self.messages:
|
72 |
-
if message:
|
73 |
-
if type(message) is tuple:
|
74 |
-
message, _, _ = message
|
75 |
-
ret += role + message + self.sep
|
76 |
-
else:
|
77 |
-
ret += role
|
78 |
-
return ret
|
79 |
-
else:
|
80 |
-
raise ValueError(f"Invalid style: {self.sep_style}")
|
81 |
-
|
82 |
-
|
83 |
-
def append_message(self, role, message):
|
84 |
-
self.messages.append([role, message])
|
85 |
-
|
86 |
-
def copy(self):
|
87 |
-
return Conversation(
|
88 |
-
system=self.system,
|
89 |
-
roles=self.roles,
|
90 |
-
messages=[[x, y] for x, y in self.messages],
|
91 |
-
offset=self.offset,
|
92 |
-
sep_style=self.sep_style,
|
93 |
-
sep=self.sep,
|
94 |
-
sep2=self.sep2)
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
class KeywordsStoppingCriteria(StoppingCriteria):
|
99 |
-
def __init__(self, keywords, tokenizer, input_ids):
|
100 |
-
self.keywords = keywords
|
101 |
-
self.keyword_ids = [tokenizer(keyword).input_ids for keyword in keywords]
|
102 |
-
self.keyword_ids = [keyword_id[0] for keyword_id in self.keyword_ids if type(keyword_id) is list and len(keyword_id) == 1]
|
103 |
-
self.tokenizer = tokenizer
|
104 |
-
self.start_len = None
|
105 |
-
self.input_ids = input_ids
|
106 |
-
|
107 |
-
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
108 |
-
if self.start_len is None:
|
109 |
-
self.start_len = self.input_ids.shape[1]
|
110 |
-
else:
|
111 |
-
for keyword_id in self.keyword_ids:
|
112 |
-
if output_ids[0, -1] == keyword_id:
|
113 |
-
return True
|
114 |
-
outputs = self.tokenizer.batch_decode(output_ids[:, self.start_len:], skip_special_tokens=True)[0]
|
115 |
-
for keyword in self.keywords:
|
116 |
-
if keyword in outputs:
|
117 |
-
return True
|
118 |
-
return False
|
119 |
-
|
120 |
-
|
121 |
-
class GOTImageEvalProcessor:
|
122 |
-
def __init__(self, image_size=384, mean=None, std=None):
|
123 |
-
if mean is None:
|
124 |
-
mean = (0.48145466, 0.4578275, 0.40821073)
|
125 |
-
if std is None:
|
126 |
-
std = (0.26862954, 0.26130258, 0.27577711)
|
127 |
-
|
128 |
-
self.normalize = transforms.Normalize(mean, std)
|
129 |
-
|
130 |
-
self.transform = transforms.Compose(
|
131 |
-
[
|
132 |
-
transforms.Resize(
|
133 |
-
(image_size, image_size), interpolation=InterpolationMode.BICUBIC
|
134 |
-
),
|
135 |
-
transforms.ToTensor(),
|
136 |
-
self.normalize,
|
137 |
-
]
|
138 |
-
)
|
139 |
-
def __call__(self, item):
|
140 |
-
return self.transform(item)
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
class GOTConfig(Qwen2Config):
|
145 |
-
model_type = "GOT"
|
146 |
-
|
147 |
-
|
148 |
-
class GOTQwenModel(Qwen2Model):
|
149 |
-
config_class = GOTConfig
|
150 |
-
|
151 |
-
def __init__(self, config: Qwen2Config):
|
152 |
-
super(GOTQwenModel, self).__init__(config)
|
153 |
-
|
154 |
-
self.vision_tower_high = build_GOT_vit_b()
|
155 |
-
|
156 |
-
self.mm_projector_vary = nn.Linear(1024, 1024)
|
157 |
-
|
158 |
-
|
159 |
-
def initialize_vision_modules(
|
160 |
-
self,
|
161 |
-
vision_tower,
|
162 |
-
pretrained_stage1_model=None,
|
163 |
-
freeze_vision_tower=False,
|
164 |
-
use_im_start_end=False,
|
165 |
-
vision_select_layer=-1,
|
166 |
-
dtype=torch.float16,
|
167 |
-
device="cpu"
|
168 |
-
):
|
169 |
-
|
170 |
-
|
171 |
-
image_processor_high = GOTImageEvalProcessor(image_size=1024)
|
172 |
-
|
173 |
-
self.vision_tower_high = self.vision_tower_high.to(dtype=dtype, device=device)
|
174 |
-
|
175 |
-
self.mm_projector_vary = self.mm_projector_vary.to(dtype=dtype, device=device)
|
176 |
-
|
177 |
-
|
178 |
-
image_token_len = 256
|
179 |
-
|
180 |
-
self.config.vision_tower = vision_tower
|
181 |
-
self.config.image_token_len = image_token_len
|
182 |
-
|
183 |
-
self.config.use_im_start_end = True
|
184 |
-
|
185 |
-
self.config.vision_select_layer = vision_select_layer
|
186 |
-
self.config.freeze_vision_tower = freeze_vision_tower
|
187 |
-
|
188 |
-
return dict(
|
189 |
-
image_processor_high=image_processor_high,
|
190 |
-
image_token_len=image_token_len,
|
191 |
-
)
|
192 |
-
|
193 |
-
|
194 |
-
def forward(
|
195 |
-
self,
|
196 |
-
input_ids: torch.LongTensor = None,
|
197 |
-
attention_mask: Optional[torch.Tensor] = None,
|
198 |
-
position_ids: Optional[torch.LongTensor] = None,
|
199 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
200 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
201 |
-
use_cache: Optional[bool] = None,
|
202 |
-
output_attentions: Optional[bool] = None,
|
203 |
-
output_hidden_states: Optional[bool] = None,
|
204 |
-
images: Optional[torch.FloatTensor] = None,
|
205 |
-
return_dict: Optional[bool] = None,
|
206 |
-
) -> Union[Tuple, BaseModelOutputWithPast]:
|
207 |
-
|
208 |
-
# HACK: replace back original embeddings for LLaVA pretraining
|
209 |
-
orig_embeds_params = getattr(self, 'orig_embeds_params', None)
|
210 |
-
if orig_embeds_params is not None:
|
211 |
-
with torch.no_grad():
|
212 |
-
self.get_input_embeddings().weight[:-self.num_new_tokens] = orig_embeds_params[:-self.num_new_tokens].data
|
213 |
-
|
214 |
-
if inputs_embeds is None:
|
215 |
-
inputs_embeds = self.embed_tokens(input_ids)
|
216 |
-
|
217 |
-
|
218 |
-
vision_tower_high = getattr(self, 'vision_tower_high', None)
|
219 |
-
|
220 |
-
|
221 |
-
if vision_tower_high is not None and (input_ids.shape[1] != 1 or self.training) and images is not None:
|
222 |
-
use_im_start_end = getattr(self.config, "use_im_start_end", -1)
|
223 |
-
|
224 |
-
vision_select_layer = getattr(self.config, "vision_select_layer", -1)
|
225 |
-
im_patch_token = getattr(self.config, "im_patch_token", -1)
|
226 |
-
im_start_token = getattr(self.config, "im_start_token", -1)
|
227 |
-
im_end_token = getattr(self.config, "im_end_token", -1)
|
228 |
-
freeze_vision_tower = getattr(self.config, "freeze_vision_tower", False)
|
229 |
-
|
230 |
-
im_patch_token = 151859
|
231 |
-
|
232 |
-
im_start_token = 151857
|
233 |
-
|
234 |
-
im_end_token = 151858
|
235 |
-
|
236 |
-
image_features = []
|
237 |
-
|
238 |
-
for image in images:
|
239 |
-
P, C, H, W = image.shape
|
240 |
-
if P == 1:
|
241 |
-
with torch.set_grad_enabled(False):
|
242 |
-
cnn_feature = vision_tower_high(image)
|
243 |
-
cnn_feature = cnn_feature.flatten(2).permute(0, 2, 1) # 256*1024
|
244 |
-
image_feature = self.mm_projector_vary(cnn_feature)
|
245 |
-
image_features.append(image_feature)
|
246 |
-
|
247 |
-
else:
|
248 |
-
image_patches = torch.unbind(image)
|
249 |
-
image_patches_features = []
|
250 |
-
for image_patch in image_patches:
|
251 |
-
image_p = torch.stack([image_patch])
|
252 |
-
|
253 |
-
with torch.set_grad_enabled(False):
|
254 |
-
cnn_feature_p = vision_tower_high(image_p)
|
255 |
-
cnn_feature_p = cnn_feature_p.flatten(2).permute(0, 2, 1)
|
256 |
-
image_feature_p = self.mm_projector_vary(cnn_feature_p)
|
257 |
-
image_patches_features.append(image_feature_p)
|
258 |
-
image_feature = torch.cat(image_patches_features, dim=1)
|
259 |
-
image_features.append(image_feature)
|
260 |
-
|
261 |
-
|
262 |
-
dummy_image_features_2 = torch.zeros(256, 1024, device=inputs_embeds.device, dtype=inputs_embeds.dtype)
|
263 |
-
dummy_image_features = dummy_image_features_2
|
264 |
-
use_im_start_end = True
|
265 |
-
new_input_embeds = []
|
266 |
-
for cur_input_ids, cur_input_embeds, cur_image_features in zip(input_ids, inputs_embeds, image_features):
|
267 |
-
if (cur_input_ids == im_patch_token).sum() == 0:
|
268 |
-
cur_input_embeds = cur_input_embeds + (0. * dummy_image_features).sum()
|
269 |
-
new_input_embeds.append(cur_input_embeds)
|
270 |
-
continue
|
271 |
-
|
272 |
-
if use_im_start_end:
|
273 |
-
if (cur_input_ids == im_start_token).sum() != (cur_input_ids == im_end_token).sum():
|
274 |
-
raise ValueError("The number of image start tokens and image end tokens should be the same.")
|
275 |
-
|
276 |
-
image_start_tokens = torch.where(cur_input_ids == im_start_token)[0]
|
277 |
-
for image_start_token_pos, per_cur_image_features in zip(image_start_tokens, cur_image_features):
|
278 |
-
per_cur_image_features = per_cur_image_features.to(device=cur_input_embeds.device)
|
279 |
-
num_patches = per_cur_image_features.shape[0]
|
280 |
-
|
281 |
-
if cur_input_ids[image_start_token_pos + num_patches + 1] != im_end_token:
|
282 |
-
raise ValueError("The image end token should follow the image start token.")
|
283 |
-
|
284 |
-
cur_input_embeds = torch.cat(
|
285 |
-
(
|
286 |
-
cur_input_embeds[:image_start_token_pos+1],
|
287 |
-
per_cur_image_features,
|
288 |
-
cur_input_embeds[image_start_token_pos + num_patches + 1:]
|
289 |
-
),
|
290 |
-
dim=0
|
291 |
-
)
|
292 |
-
|
293 |
-
|
294 |
-
new_input_embeds.append(cur_input_embeds)
|
295 |
-
else:
|
296 |
-
raise NotImplementedError
|
297 |
-
|
298 |
-
inputs_embeds = torch.stack(new_input_embeds, dim=0)
|
299 |
-
|
300 |
-
return super(GOTQwenModel, self).forward(
|
301 |
-
input_ids=None, attention_mask=attention_mask, past_key_values=past_key_values,
|
302 |
-
inputs_embeds=inputs_embeds, use_cache=use_cache, position_ids = position_ids,
|
303 |
-
output_attentions=output_attentions, output_hidden_states=output_hidden_states,
|
304 |
-
return_dict=return_dict
|
305 |
-
)
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
310 |
-
config_class = GOTConfig
|
311 |
-
# supports_gradient_checkpointing = True
|
312 |
-
|
313 |
-
def __init__(self, config):
|
314 |
-
super(Qwen2ForCausalLM, self).__init__(config)
|
315 |
-
self.model = GOTQwenModel(config)
|
316 |
-
|
317 |
-
self.vocab_size = config.vocab_size
|
318 |
-
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
319 |
-
|
320 |
-
# Initialize weights and apply final processing
|
321 |
-
self.post_init()
|
322 |
-
|
323 |
-
def get_model(self):
|
324 |
-
return self.model
|
325 |
-
|
326 |
-
def forward(
|
327 |
-
self,
|
328 |
-
input_ids: torch.LongTensor = None,
|
329 |
-
attention_mask: Optional[torch.Tensor] = None,
|
330 |
-
position_ids: Optional[torch.LongTensor] = None,
|
331 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
332 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
333 |
-
labels: Optional[torch.LongTensor] = None,
|
334 |
-
use_cache: Optional[bool] = None,
|
335 |
-
output_attentions: Optional[bool] = None,
|
336 |
-
output_hidden_states: Optional[bool] = None,
|
337 |
-
images: Optional[torch.FloatTensor] = None,
|
338 |
-
return_dict: Optional[bool] = None,
|
339 |
-
|
340 |
-
) -> Union[Tuple, CausalLMOutputWithPast]:
|
341 |
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
342 |
-
output_hidden_states = (
|
343 |
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
344 |
-
)
|
345 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
346 |
-
|
347 |
-
outputs = self.model(
|
348 |
-
input_ids=input_ids,
|
349 |
-
past_key_values=past_key_values,
|
350 |
-
attention_mask=attention_mask,
|
351 |
-
position_ids=position_ids,
|
352 |
-
inputs_embeds=inputs_embeds,
|
353 |
-
use_cache=use_cache,
|
354 |
-
output_attentions=output_attentions,
|
355 |
-
output_hidden_states=output_hidden_states,
|
356 |
-
images=images,
|
357 |
-
return_dict=return_dict
|
358 |
-
|
359 |
-
)
|
360 |
-
|
361 |
-
hidden_states = outputs[0]
|
362 |
-
logits = self.lm_head(hidden_states)
|
363 |
-
logits = logits.float()
|
364 |
-
|
365 |
-
# logits
|
366 |
-
|
367 |
-
loss = None
|
368 |
-
if labels is not None:
|
369 |
-
# Shift so that tokens < n predict n
|
370 |
-
shift_logits = logits[..., :-1, :].contiguous()
|
371 |
-
shift_labels = labels[..., 1:].contiguous()
|
372 |
-
# Flatten the tokens
|
373 |
-
loss_fct = CrossEntropyLoss()
|
374 |
-
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
375 |
-
shift_labels = shift_labels.view(-1)
|
376 |
-
# Enable model parallelism
|
377 |
-
shift_labels = shift_labels.to(shift_logits.device)
|
378 |
-
loss = loss_fct(shift_logits, shift_labels)
|
379 |
-
|
380 |
-
if not return_dict:
|
381 |
-
output = (logits,) + outputs[1:]
|
382 |
-
return (loss,) + output if loss is not None else output
|
383 |
-
|
384 |
-
return CausalLMOutputWithPast(
|
385 |
-
loss=loss,
|
386 |
-
logits=logits,
|
387 |
-
past_key_values=outputs.past_key_values,
|
388 |
-
hidden_states=outputs.hidden_states,
|
389 |
-
attentions=outputs.attentions,
|
390 |
-
)
|
391 |
-
|
392 |
-
|
393 |
-
def prepare_inputs_for_generation(
|
394 |
-
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
395 |
-
):
|
396 |
-
# Omit tokens covered by past_key_values
|
397 |
-
if past_key_values is not None:
|
398 |
-
if isinstance(past_key_values, Cache):
|
399 |
-
cache_length = past_key_values.get_seq_length()
|
400 |
-
past_length = past_key_values.seen_tokens
|
401 |
-
max_cache_length = past_key_values.get_max_length()
|
402 |
-
else:
|
403 |
-
cache_length = past_length = past_key_values[0][0].shape[2]
|
404 |
-
max_cache_length = None
|
405 |
-
|
406 |
-
# Keep only the unprocessed tokens:
|
407 |
-
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
408 |
-
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
409 |
-
# input)
|
410 |
-
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
411 |
-
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
412 |
-
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
413 |
-
# input_ids based on the past_length.
|
414 |
-
elif past_length < input_ids.shape[1]:
|
415 |
-
input_ids = input_ids[:, past_length:]
|
416 |
-
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
417 |
-
|
418 |
-
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
419 |
-
if (
|
420 |
-
max_cache_length is not None
|
421 |
-
and attention_mask is not None
|
422 |
-
and cache_length + input_ids.shape[1] > max_cache_length
|
423 |
-
):
|
424 |
-
attention_mask = attention_mask[:, -max_cache_length:]
|
425 |
-
|
426 |
-
position_ids = kwargs.get("position_ids", None)
|
427 |
-
if attention_mask is not None and position_ids is None:
|
428 |
-
# create position_ids on the fly for batch generation
|
429 |
-
position_ids = attention_mask.long().cumsum(-1) - 1
|
430 |
-
position_ids.masked_fill_(attention_mask == 0, 1)
|
431 |
-
if past_key_values:
|
432 |
-
position_ids = position_ids[:, -input_ids.shape[1] :]
|
433 |
-
|
434 |
-
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
435 |
-
if inputs_embeds is not None and past_key_values is None:
|
436 |
-
model_inputs = {"inputs_embeds": inputs_embeds}
|
437 |
-
else:
|
438 |
-
model_inputs = {"input_ids": input_ids}
|
439 |
-
|
440 |
-
model_inputs.update(
|
441 |
-
{
|
442 |
-
"position_ids": position_ids,
|
443 |
-
"past_key_values": past_key_values,
|
444 |
-
"use_cache": kwargs.get("use_cache"),
|
445 |
-
"attention_mask": attention_mask,
|
446 |
-
"images": kwargs.get("images", None),
|
447 |
-
}
|
448 |
-
)
|
449 |
-
return model_inputs
|
450 |
-
|
451 |
-
def initialize_vision_tokenizer(
|
452 |
-
self,
|
453 |
-
tokenizer,
|
454 |
-
freeze_lm_model=False,
|
455 |
-
pretrained_stage1_model=None,
|
456 |
-
device="cpu"
|
457 |
-
):
|
458 |
-
config = self.get_model().config
|
459 |
-
|
460 |
-
|
461 |
-
self.resize_token_embeddings(len(tokenizer))
|
462 |
-
|
463 |
-
config.im_patch_token = 151859
|
464 |
-
|
465 |
-
config.use_im_start_end = True
|
466 |
-
|
467 |
-
if config.use_im_start_end:
|
468 |
-
self.resize_token_embeddings(len(tokenizer))
|
469 |
-
config.im_start_token, config.im_end_token = 151857, 151858
|
470 |
-
|
471 |
-
def load_image(self, image_file):
|
472 |
-
if image_file.startswith('http') or image_file.startswith('https'):
|
473 |
-
|
474 |
-
|
475 |
-
else:
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
"""
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
image =
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
qs = 'OCR: '
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
bbox[
|
517 |
-
|
518 |
-
bbox[
|
519 |
-
bbox[
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
qs = str(bbox) + ' ' + 'OCR: '
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
qs = '[' + ocr_color + ']' + ' ' + 'OCR: '
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
qs =
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
conv.
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
tk.
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
-
|
624 |
-
|
625 |
-
|
626 |
-
|
627 |
-
|
628 |
-
|
629 |
-
|
630 |
-
|
631 |
-
|
632 |
-
|
633 |
-
|
634 |
-
|
635 |
-
|
636 |
-
|
637 |
-
|
638 |
-
|
639 |
-
|
640 |
-
|
641 |
-
|
642 |
-
|
643 |
-
|
644 |
-
|
645 |
-
|
646 |
-
|
647 |
-
|
648 |
-
|
649 |
-
|
650 |
-
|
651 |
-
|
652 |
-
|
653 |
-
|
654 |
-
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
gt += out + '
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
-
|
711 |
-
|
712 |
-
|
713 |
-
|
714 |
-
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
-
(
|
719 |
-
(
|
720 |
-
|
721 |
-
|
722 |
-
|
723 |
-
|
724 |
-
|
725 |
-
|
726 |
-
|
727 |
-
|
728 |
-
|
729 |
-
|
730 |
-
|
731 |
-
|
732 |
-
|
733 |
-
|
734 |
-
|
735 |
-
|
736 |
-
|
737 |
-
|
738 |
-
|
739 |
-
|
740 |
-
|
741 |
-
|
742 |
-
|
743 |
-
|
744 |
-
|
745 |
-
|
746 |
-
|
747 |
-
|
748 |
-
|
749 |
-
|
750 |
-
|
751 |
-
|
752 |
-
|
753 |
-
#
|
754 |
-
#
|
755 |
-
|
756 |
-
# patches =
|
757 |
-
|
758 |
-
|
759 |
-
|
760 |
-
|
761 |
-
|
762 |
-
|
763 |
-
|
764 |
-
|
765 |
-
|
766 |
-
|
767 |
-
|
768 |
-
|
769 |
-
qs = 'OCR upon the patch reference: '
|
770 |
-
|
771 |
-
|
772 |
-
|
773 |
-
img =
|
774 |
-
|
775 |
-
|
776 |
-
|
777 |
-
|
778 |
-
|
779 |
-
|
780 |
-
|
781 |
-
|
782 |
-
|
783 |
-
|
784 |
-
|
785 |
-
|
786 |
-
|
787 |
-
|
788 |
-
|
789 |
-
|
790 |
-
qs =
|
791 |
-
|
792 |
-
|
793 |
-
|
794 |
-
|
795 |
-
|
796 |
-
|
797 |
-
|
798 |
-
|
799 |
-
|
800 |
-
|
801 |
-
|
802 |
-
|
803 |
-
|
804 |
-
|
805 |
-
|
806 |
-
|
807 |
-
conv.
|
808 |
-
|
809 |
-
|
810 |
-
|
811 |
-
|
812 |
-
|
813 |
-
|
814 |
-
|
815 |
-
|
816 |
-
|
817 |
-
|
818 |
-
|
819 |
-
|
820 |
-
|
821 |
-
|
822 |
-
|
823 |
-
|
824 |
-
|
825 |
-
|
826 |
-
|
827 |
-
|
828 |
-
|
829 |
-
|
830 |
-
|
831 |
-
|
832 |
-
|
833 |
-
|
834 |
-
|
835 |
-
|
836 |
-
|
837 |
-
|
838 |
-
|
839 |
-
|
840 |
-
|
841 |
-
|
842 |
-
|
843 |
-
|
844 |
-
|
845 |
-
|
846 |
-
|
847 |
-
|
848 |
-
|
849 |
-
|
850 |
-
|
851 |
-
|
852 |
-
|
853 |
-
|
854 |
-
|
855 |
-
|
856 |
-
|
857 |
-
|
858 |
-
|
859 |
-
|
860 |
-
|
861 |
-
|
862 |
-
|
863 |
-
|
864 |
-
|
865 |
-
|
866 |
-
|
867 |
-
|
868 |
-
|
869 |
-
|
870 |
-
|
871 |
-
|
872 |
-
|
873 |
-
|
874 |
-
|
875 |
-
|
876 |
-
|
877 |
-
|
878 |
-
|
879 |
-
|
880 |
-
|
|
|
|
|
881 |
return response_str
|
|
|
1 |
+
from transformers import Qwen2Config, Qwen2Model, Qwen2ForCausalLM, StoppingCriteria, TextStreamer
|
2 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
3 |
+
from typing import List, Optional, Tuple, Union
|
4 |
+
from transformers.cache_utils import Cache
|
5 |
+
import requests
|
6 |
+
from PIL import Image
|
7 |
+
from io import BytesIO
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
from torch.nn import CrossEntropyLoss
|
11 |
+
from .got_vision_b import build_GOT_vit_b
|
12 |
+
from torchvision import transforms
|
13 |
+
from torchvision.transforms.functional import InterpolationMode
|
14 |
+
import dataclasses
|
15 |
+
###
|
16 |
+
|
17 |
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
18 |
+
DEFAULT_IMAGE_PATCH_TOKEN = '<imgpad>'
|
19 |
+
DEFAULT_IM_START_TOKEN = '<img>'
|
20 |
+
DEFAULT_IM_END_TOKEN = '</img>'
|
21 |
+
|
22 |
+
from enum import auto, Enum
|
23 |
+
class SeparatorStyle(Enum):
|
24 |
+
"""Different separator style."""
|
25 |
+
SINGLE = auto()
|
26 |
+
TWO = auto()
|
27 |
+
MPT = auto()
|
28 |
+
|
29 |
+
|
30 |
+
@dataclasses.dataclass
|
31 |
+
class Conversation:
|
32 |
+
"""A class that keeps all conversation history."""
|
33 |
+
system: str
|
34 |
+
roles: List[str]
|
35 |
+
messages: List[List[str]]
|
36 |
+
offset: int
|
37 |
+
sep_style: SeparatorStyle = SeparatorStyle.SINGLE
|
38 |
+
sep: str = "<|im_end|>"
|
39 |
+
sep2: str = None
|
40 |
+
version: str = "Unknown"
|
41 |
+
|
42 |
+
skip_next: bool = False
|
43 |
+
|
44 |
+
def get_prompt(self):
|
45 |
+
if self.sep_style == SeparatorStyle.SINGLE:
|
46 |
+
ret = self.system + self.sep + '\n'
|
47 |
+
for role, message in self.messages:
|
48 |
+
if message:
|
49 |
+
if type(message) is tuple:
|
50 |
+
message, _, _ = message
|
51 |
+
ret += role + ": " + message + self.sep
|
52 |
+
else:
|
53 |
+
ret += role + ":"
|
54 |
+
return ret
|
55 |
+
elif self.sep_style == SeparatorStyle.TWO:
|
56 |
+
seps = [self.sep, self.sep2]
|
57 |
+
ret = self.system + seps[0]
|
58 |
+
for i, (role, message) in enumerate(self.messages):
|
59 |
+
if message:
|
60 |
+
if type(message) is tuple:
|
61 |
+
message, _, _ = message
|
62 |
+
ret += role + ": " + message + seps[i % 2]
|
63 |
+
else:
|
64 |
+
ret += role + ":"
|
65 |
+
return ret
|
66 |
+
if self.sep_style == SeparatorStyle.MPT:
|
67 |
+
if self.system:
|
68 |
+
ret = self.system + self.sep
|
69 |
+
else:
|
70 |
+
ret = ''
|
71 |
+
for role, message in self.messages:
|
72 |
+
if message:
|
73 |
+
if type(message) is tuple:
|
74 |
+
message, _, _ = message
|
75 |
+
ret += role + message + self.sep
|
76 |
+
else:
|
77 |
+
ret += role
|
78 |
+
return ret
|
79 |
+
else:
|
80 |
+
raise ValueError(f"Invalid style: {self.sep_style}")
|
81 |
+
|
82 |
+
|
83 |
+
def append_message(self, role, message):
|
84 |
+
self.messages.append([role, message])
|
85 |
+
|
86 |
+
def copy(self):
|
87 |
+
return Conversation(
|
88 |
+
system=self.system,
|
89 |
+
roles=self.roles,
|
90 |
+
messages=[[x, y] for x, y in self.messages],
|
91 |
+
offset=self.offset,
|
92 |
+
sep_style=self.sep_style,
|
93 |
+
sep=self.sep,
|
94 |
+
sep2=self.sep2)
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
class KeywordsStoppingCriteria(StoppingCriteria):
|
99 |
+
def __init__(self, keywords, tokenizer, input_ids):
|
100 |
+
self.keywords = keywords
|
101 |
+
self.keyword_ids = [tokenizer(keyword).input_ids for keyword in keywords]
|
102 |
+
self.keyword_ids = [keyword_id[0] for keyword_id in self.keyword_ids if type(keyword_id) is list and len(keyword_id) == 1]
|
103 |
+
self.tokenizer = tokenizer
|
104 |
+
self.start_len = None
|
105 |
+
self.input_ids = input_ids
|
106 |
+
|
107 |
+
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
108 |
+
if self.start_len is None:
|
109 |
+
self.start_len = self.input_ids.shape[1]
|
110 |
+
else:
|
111 |
+
for keyword_id in self.keyword_ids:
|
112 |
+
if output_ids[0, -1] == keyword_id:
|
113 |
+
return True
|
114 |
+
outputs = self.tokenizer.batch_decode(output_ids[:, self.start_len:], skip_special_tokens=True)[0]
|
115 |
+
for keyword in self.keywords:
|
116 |
+
if keyword in outputs:
|
117 |
+
return True
|
118 |
+
return False
|
119 |
+
|
120 |
+
|
121 |
+
class GOTImageEvalProcessor:
|
122 |
+
def __init__(self, image_size=384, mean=None, std=None):
|
123 |
+
if mean is None:
|
124 |
+
mean = (0.48145466, 0.4578275, 0.40821073)
|
125 |
+
if std is None:
|
126 |
+
std = (0.26862954, 0.26130258, 0.27577711)
|
127 |
+
|
128 |
+
self.normalize = transforms.Normalize(mean, std)
|
129 |
+
|
130 |
+
self.transform = transforms.Compose(
|
131 |
+
[
|
132 |
+
transforms.Resize(
|
133 |
+
(image_size, image_size), interpolation=InterpolationMode.BICUBIC
|
134 |
+
),
|
135 |
+
transforms.ToTensor(),
|
136 |
+
self.normalize,
|
137 |
+
]
|
138 |
+
)
|
139 |
+
def __call__(self, item):
|
140 |
+
return self.transform(item)
|
141 |
+
|
142 |
+
|
143 |
+
|
144 |
+
class GOTConfig(Qwen2Config):
|
145 |
+
model_type = "GOT"
|
146 |
+
|
147 |
+
|
148 |
+
class GOTQwenModel(Qwen2Model):
|
149 |
+
config_class = GOTConfig
|
150 |
+
|
151 |
+
def __init__(self, config: Qwen2Config):
|
152 |
+
super(GOTQwenModel, self).__init__(config)
|
153 |
+
|
154 |
+
self.vision_tower_high = build_GOT_vit_b()
|
155 |
+
|
156 |
+
self.mm_projector_vary = nn.Linear(1024, 1024)
|
157 |
+
|
158 |
+
|
159 |
+
def initialize_vision_modules(
|
160 |
+
self,
|
161 |
+
vision_tower,
|
162 |
+
pretrained_stage1_model=None,
|
163 |
+
freeze_vision_tower=False,
|
164 |
+
use_im_start_end=False,
|
165 |
+
vision_select_layer=-1,
|
166 |
+
dtype=torch.float16,
|
167 |
+
device="cpu"
|
168 |
+
):
|
169 |
+
|
170 |
+
|
171 |
+
image_processor_high = GOTImageEvalProcessor(image_size=1024)
|
172 |
+
|
173 |
+
self.vision_tower_high = self.vision_tower_high.to(dtype=dtype, device=device)
|
174 |
+
|
175 |
+
self.mm_projector_vary = self.mm_projector_vary.to(dtype=dtype, device=device)
|
176 |
+
|
177 |
+
|
178 |
+
image_token_len = 256
|
179 |
+
|
180 |
+
self.config.vision_tower = vision_tower
|
181 |
+
self.config.image_token_len = image_token_len
|
182 |
+
|
183 |
+
self.config.use_im_start_end = True
|
184 |
+
|
185 |
+
self.config.vision_select_layer = vision_select_layer
|
186 |
+
self.config.freeze_vision_tower = freeze_vision_tower
|
187 |
+
|
188 |
+
return dict(
|
189 |
+
image_processor_high=image_processor_high,
|
190 |
+
image_token_len=image_token_len,
|
191 |
+
)
|
192 |
+
|
193 |
+
|
194 |
+
def forward(
|
195 |
+
self,
|
196 |
+
input_ids: torch.LongTensor = None,
|
197 |
+
attention_mask: Optional[torch.Tensor] = None,
|
198 |
+
position_ids: Optional[torch.LongTensor] = None,
|
199 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
200 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
201 |
+
use_cache: Optional[bool] = None,
|
202 |
+
output_attentions: Optional[bool] = None,
|
203 |
+
output_hidden_states: Optional[bool] = None,
|
204 |
+
images: Optional[torch.FloatTensor] = None,
|
205 |
+
return_dict: Optional[bool] = None,
|
206 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
207 |
+
|
208 |
+
# HACK: replace back original embeddings for LLaVA pretraining
|
209 |
+
orig_embeds_params = getattr(self, 'orig_embeds_params', None)
|
210 |
+
if orig_embeds_params is not None:
|
211 |
+
with torch.no_grad():
|
212 |
+
self.get_input_embeddings().weight[:-self.num_new_tokens] = orig_embeds_params[:-self.num_new_tokens].data
|
213 |
+
|
214 |
+
if inputs_embeds is None:
|
215 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
216 |
+
|
217 |
+
|
218 |
+
vision_tower_high = getattr(self, 'vision_tower_high', None)
|
219 |
+
|
220 |
+
|
221 |
+
if vision_tower_high is not None and (input_ids.shape[1] != 1 or self.training) and images is not None:
|
222 |
+
use_im_start_end = getattr(self.config, "use_im_start_end", -1)
|
223 |
+
|
224 |
+
vision_select_layer = getattr(self.config, "vision_select_layer", -1)
|
225 |
+
im_patch_token = getattr(self.config, "im_patch_token", -1)
|
226 |
+
im_start_token = getattr(self.config, "im_start_token", -1)
|
227 |
+
im_end_token = getattr(self.config, "im_end_token", -1)
|
228 |
+
freeze_vision_tower = getattr(self.config, "freeze_vision_tower", False)
|
229 |
+
|
230 |
+
im_patch_token = 151859
|
231 |
+
|
232 |
+
im_start_token = 151857
|
233 |
+
|
234 |
+
im_end_token = 151858
|
235 |
+
|
236 |
+
image_features = []
|
237 |
+
|
238 |
+
for image in images:
|
239 |
+
P, C, H, W = image.shape
|
240 |
+
if P == 1:
|
241 |
+
with torch.set_grad_enabled(False):
|
242 |
+
cnn_feature = vision_tower_high(image)
|
243 |
+
cnn_feature = cnn_feature.flatten(2).permute(0, 2, 1) # 256*1024
|
244 |
+
image_feature = self.mm_projector_vary(cnn_feature)
|
245 |
+
image_features.append(image_feature)
|
246 |
+
|
247 |
+
else:
|
248 |
+
image_patches = torch.unbind(image)
|
249 |
+
image_patches_features = []
|
250 |
+
for image_patch in image_patches:
|
251 |
+
image_p = torch.stack([image_patch])
|
252 |
+
|
253 |
+
with torch.set_grad_enabled(False):
|
254 |
+
cnn_feature_p = vision_tower_high(image_p)
|
255 |
+
cnn_feature_p = cnn_feature_p.flatten(2).permute(0, 2, 1)
|
256 |
+
image_feature_p = self.mm_projector_vary(cnn_feature_p)
|
257 |
+
image_patches_features.append(image_feature_p)
|
258 |
+
image_feature = torch.cat(image_patches_features, dim=1)
|
259 |
+
image_features.append(image_feature)
|
260 |
+
|
261 |
+
|
262 |
+
dummy_image_features_2 = torch.zeros(256, 1024, device=inputs_embeds.device, dtype=inputs_embeds.dtype)
|
263 |
+
dummy_image_features = dummy_image_features_2
|
264 |
+
use_im_start_end = True
|
265 |
+
new_input_embeds = []
|
266 |
+
for cur_input_ids, cur_input_embeds, cur_image_features in zip(input_ids, inputs_embeds, image_features):
|
267 |
+
if (cur_input_ids == im_patch_token).sum() == 0:
|
268 |
+
cur_input_embeds = cur_input_embeds + (0. * dummy_image_features).sum()
|
269 |
+
new_input_embeds.append(cur_input_embeds)
|
270 |
+
continue
|
271 |
+
|
272 |
+
if use_im_start_end:
|
273 |
+
if (cur_input_ids == im_start_token).sum() != (cur_input_ids == im_end_token).sum():
|
274 |
+
raise ValueError("The number of image start tokens and image end tokens should be the same.")
|
275 |
+
|
276 |
+
image_start_tokens = torch.where(cur_input_ids == im_start_token)[0]
|
277 |
+
for image_start_token_pos, per_cur_image_features in zip(image_start_tokens, cur_image_features):
|
278 |
+
per_cur_image_features = per_cur_image_features.to(device=cur_input_embeds.device)
|
279 |
+
num_patches = per_cur_image_features.shape[0]
|
280 |
+
|
281 |
+
if cur_input_ids[image_start_token_pos + num_patches + 1] != im_end_token:
|
282 |
+
raise ValueError("The image end token should follow the image start token.")
|
283 |
+
|
284 |
+
cur_input_embeds = torch.cat(
|
285 |
+
(
|
286 |
+
cur_input_embeds[:image_start_token_pos+1],
|
287 |
+
per_cur_image_features,
|
288 |
+
cur_input_embeds[image_start_token_pos + num_patches + 1:]
|
289 |
+
),
|
290 |
+
dim=0
|
291 |
+
)
|
292 |
+
|
293 |
+
|
294 |
+
new_input_embeds.append(cur_input_embeds)
|
295 |
+
else:
|
296 |
+
raise NotImplementedError
|
297 |
+
|
298 |
+
inputs_embeds = torch.stack(new_input_embeds, dim=0)
|
299 |
+
|
300 |
+
return super(GOTQwenModel, self).forward(
|
301 |
+
input_ids=None, attention_mask=attention_mask, past_key_values=past_key_values,
|
302 |
+
inputs_embeds=inputs_embeds, use_cache=use_cache, position_ids = position_ids,
|
303 |
+
output_attentions=output_attentions, output_hidden_states=output_hidden_states,
|
304 |
+
return_dict=return_dict
|
305 |
+
)
|
306 |
+
|
307 |
+
|
308 |
+
|
309 |
+
class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
310 |
+
config_class = GOTConfig
|
311 |
+
# supports_gradient_checkpointing = True
|
312 |
+
|
313 |
+
def __init__(self, config):
|
314 |
+
super(Qwen2ForCausalLM, self).__init__(config)
|
315 |
+
self.model = GOTQwenModel(config)
|
316 |
+
|
317 |
+
self.vocab_size = config.vocab_size
|
318 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
319 |
+
|
320 |
+
# Initialize weights and apply final processing
|
321 |
+
self.post_init()
|
322 |
+
|
323 |
+
def get_model(self):
|
324 |
+
return self.model
|
325 |
+
|
326 |
+
def forward(
|
327 |
+
self,
|
328 |
+
input_ids: torch.LongTensor = None,
|
329 |
+
attention_mask: Optional[torch.Tensor] = None,
|
330 |
+
position_ids: Optional[torch.LongTensor] = None,
|
331 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
332 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
333 |
+
labels: Optional[torch.LongTensor] = None,
|
334 |
+
use_cache: Optional[bool] = None,
|
335 |
+
output_attentions: Optional[bool] = None,
|
336 |
+
output_hidden_states: Optional[bool] = None,
|
337 |
+
images: Optional[torch.FloatTensor] = None,
|
338 |
+
return_dict: Optional[bool] = None,
|
339 |
+
|
340 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
341 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
342 |
+
output_hidden_states = (
|
343 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
344 |
+
)
|
345 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
346 |
+
|
347 |
+
outputs = self.model(
|
348 |
+
input_ids=input_ids,
|
349 |
+
past_key_values=past_key_values,
|
350 |
+
attention_mask=attention_mask,
|
351 |
+
position_ids=position_ids,
|
352 |
+
inputs_embeds=inputs_embeds,
|
353 |
+
use_cache=use_cache,
|
354 |
+
output_attentions=output_attentions,
|
355 |
+
output_hidden_states=output_hidden_states,
|
356 |
+
images=images,
|
357 |
+
return_dict=return_dict
|
358 |
+
|
359 |
+
)
|
360 |
+
|
361 |
+
hidden_states = outputs[0]
|
362 |
+
logits = self.lm_head(hidden_states)
|
363 |
+
logits = logits.float()
|
364 |
+
|
365 |
+
# logits
|
366 |
+
|
367 |
+
loss = None
|
368 |
+
if labels is not None:
|
369 |
+
# Shift so that tokens < n predict n
|
370 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
371 |
+
shift_labels = labels[..., 1:].contiguous()
|
372 |
+
# Flatten the tokens
|
373 |
+
loss_fct = CrossEntropyLoss()
|
374 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
375 |
+
shift_labels = shift_labels.view(-1)
|
376 |
+
# Enable model parallelism
|
377 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
378 |
+
loss = loss_fct(shift_logits, shift_labels)
|
379 |
+
|
380 |
+
if not return_dict:
|
381 |
+
output = (logits,) + outputs[1:]
|
382 |
+
return (loss,) + output if loss is not None else output
|
383 |
+
|
384 |
+
return CausalLMOutputWithPast(
|
385 |
+
loss=loss,
|
386 |
+
logits=logits,
|
387 |
+
past_key_values=outputs.past_key_values,
|
388 |
+
hidden_states=outputs.hidden_states,
|
389 |
+
attentions=outputs.attentions,
|
390 |
+
)
|
391 |
+
|
392 |
+
|
393 |
+
def prepare_inputs_for_generation(
|
394 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
395 |
+
):
|
396 |
+
# Omit tokens covered by past_key_values
|
397 |
+
if past_key_values is not None:
|
398 |
+
if isinstance(past_key_values, Cache):
|
399 |
+
cache_length = past_key_values.get_seq_length()
|
400 |
+
past_length = past_key_values.seen_tokens
|
401 |
+
max_cache_length = past_key_values.get_max_length()
|
402 |
+
else:
|
403 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
404 |
+
max_cache_length = None
|
405 |
+
|
406 |
+
# Keep only the unprocessed tokens:
|
407 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
408 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
409 |
+
# input)
|
410 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
411 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
412 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
413 |
+
# input_ids based on the past_length.
|
414 |
+
elif past_length < input_ids.shape[1]:
|
415 |
+
input_ids = input_ids[:, past_length:]
|
416 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
417 |
+
|
418 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
419 |
+
if (
|
420 |
+
max_cache_length is not None
|
421 |
+
and attention_mask is not None
|
422 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
423 |
+
):
|
424 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
425 |
+
|
426 |
+
position_ids = kwargs.get("position_ids", None)
|
427 |
+
if attention_mask is not None and position_ids is None:
|
428 |
+
# create position_ids on the fly for batch generation
|
429 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
430 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
431 |
+
if past_key_values:
|
432 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
433 |
+
|
434 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
435 |
+
if inputs_embeds is not None and past_key_values is None:
|
436 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
437 |
+
else:
|
438 |
+
model_inputs = {"input_ids": input_ids}
|
439 |
+
|
440 |
+
model_inputs.update(
|
441 |
+
{
|
442 |
+
"position_ids": position_ids,
|
443 |
+
"past_key_values": past_key_values,
|
444 |
+
"use_cache": kwargs.get("use_cache"),
|
445 |
+
"attention_mask": attention_mask,
|
446 |
+
"images": kwargs.get("images", None),
|
447 |
+
}
|
448 |
+
)
|
449 |
+
return model_inputs
|
450 |
+
|
451 |
+
def initialize_vision_tokenizer(
|
452 |
+
self,
|
453 |
+
tokenizer,
|
454 |
+
freeze_lm_model=False,
|
455 |
+
pretrained_stage1_model=None,
|
456 |
+
device="cpu"
|
457 |
+
):
|
458 |
+
config = self.get_model().config
|
459 |
+
|
460 |
+
|
461 |
+
self.resize_token_embeddings(len(tokenizer))
|
462 |
+
|
463 |
+
config.im_patch_token = 151859
|
464 |
+
|
465 |
+
config.use_im_start_end = True
|
466 |
+
|
467 |
+
if config.use_im_start_end:
|
468 |
+
self.resize_token_embeddings(len(tokenizer))
|
469 |
+
config.im_start_token, config.im_end_token = 151857, 151858
|
470 |
+
|
471 |
+
def load_image(self, image_file):
|
472 |
+
# if image_file.startswith('http') or image_file.startswith('https'):
|
473 |
+
# response = requests.get(image_file)
|
474 |
+
# image = Image.open(BytesIO(response.content)).convert('RGB')
|
475 |
+
# else:
|
476 |
+
# image = Image.open(image_file).convert('RGB')
|
477 |
+
|
478 |
+
image = image_file
|
479 |
+
return image
|
480 |
+
|
481 |
+
def disable_torch_init(self):
|
482 |
+
"""
|
483 |
+
Disable the redundant torch default initialization to accelerate model creation.
|
484 |
+
"""
|
485 |
+
import torch
|
486 |
+
setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
|
487 |
+
setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
|
488 |
+
|
489 |
+
def chat(self, tokenizer, image_file, ocr_type, ocr_box='', ocr_color='', render=False, save_render_file=None, print_prompt=False, gradio_input=False, stream_flag = False):
|
490 |
+
|
491 |
+
self.disable_torch_init()
|
492 |
+
|
493 |
+
|
494 |
+
image_processor_high = GOTImageEvalProcessor(image_size=1024)
|
495 |
+
|
496 |
+
use_im_start_end = True
|
497 |
+
|
498 |
+
image_token_len = 256
|
499 |
+
|
500 |
+
if gradio_input:
|
501 |
+
image = image_file.copy()
|
502 |
+
else:
|
503 |
+
image = self.load_image(image_file)
|
504 |
+
|
505 |
+
w, h = image.size
|
506 |
+
|
507 |
+
if ocr_type == 'format':
|
508 |
+
qs = 'OCR with format: '
|
509 |
+
else:
|
510 |
+
qs = 'OCR: '
|
511 |
+
|
512 |
+
if ocr_box:
|
513 |
+
bbox = eval(ocr_box)
|
514 |
+
if len(bbox) == 2:
|
515 |
+
bbox[0] = int(bbox[0]/w*1000)
|
516 |
+
bbox[1] = int(bbox[1]/h*1000)
|
517 |
+
if len(bbox) == 4:
|
518 |
+
bbox[0] = int(bbox[0]/w*1000)
|
519 |
+
bbox[1] = int(bbox[1]/h*1000)
|
520 |
+
bbox[2] = int(bbox[2]/w*1000)
|
521 |
+
bbox[3] = int(bbox[3]/h*1000)
|
522 |
+
if ocr_type == 'format':
|
523 |
+
qs = str(bbox) + ' ' + 'OCR with format: '
|
524 |
+
else:
|
525 |
+
qs = str(bbox) + ' ' + 'OCR: '
|
526 |
+
|
527 |
+
if ocr_color:
|
528 |
+
if ocr_type == 'format':
|
529 |
+
qs = '[' + ocr_color + ']' + ' ' + 'OCR with format: '
|
530 |
+
else:
|
531 |
+
qs = '[' + ocr_color + ']' + ' ' + 'OCR: '
|
532 |
+
|
533 |
+
if use_im_start_end:
|
534 |
+
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_PATCH_TOKEN*image_token_len + DEFAULT_IM_END_TOKEN + '\n' + qs
|
535 |
+
else:
|
536 |
+
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
|
537 |
+
|
538 |
+
|
539 |
+
conv_mpt = Conversation(
|
540 |
+
system="""<|im_start|>system
|
541 |
+
You should follow the instructions carefully and explain your answers in detail.""",
|
542 |
+
# system = None,
|
543 |
+
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
|
544 |
+
version="mpt",
|
545 |
+
messages=(),
|
546 |
+
offset=0,
|
547 |
+
sep_style=SeparatorStyle.MPT,
|
548 |
+
sep="<|im_end|>",
|
549 |
+
)
|
550 |
+
|
551 |
+
conv = conv_mpt.copy()
|
552 |
+
conv.append_message(conv.roles[0], qs)
|
553 |
+
conv.append_message(conv.roles[1], None)
|
554 |
+
prompt = conv.get_prompt()
|
555 |
+
|
556 |
+
if print_prompt:
|
557 |
+
print(prompt)
|
558 |
+
|
559 |
+
inputs = tokenizer([prompt])
|
560 |
+
|
561 |
+
image_tensor_1 = image_processor_high(image)
|
562 |
+
|
563 |
+
input_ids = torch.as_tensor(inputs.input_ids).cpu()
|
564 |
+
|
565 |
+
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
566 |
+
keywords = [stop_str]
|
567 |
+
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
568 |
+
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
569 |
+
|
570 |
+
if stream_flag:
|
571 |
+
with torch.autocast("cpu", dtype=torch.bfloat16):
|
572 |
+
output_ids = self.generate(
|
573 |
+
input_ids,
|
574 |
+
images=[image_tensor_1.unsqueeze(0).half().cpu()],
|
575 |
+
do_sample=False,
|
576 |
+
num_beams = 1,
|
577 |
+
no_repeat_ngram_size = 20,
|
578 |
+
streamer=streamer,
|
579 |
+
max_new_tokens=4096,
|
580 |
+
stopping_criteria=[stopping_criteria]
|
581 |
+
)
|
582 |
+
else:
|
583 |
+
with torch.autocast("cpu", dtype=torch.bfloat16):
|
584 |
+
output_ids = self.generate(
|
585 |
+
input_ids,
|
586 |
+
images=[image_tensor_1.unsqueeze(0).half().cpu()],
|
587 |
+
do_sample=False,
|
588 |
+
num_beams = 1,
|
589 |
+
no_repeat_ngram_size = 20,
|
590 |
+
# streamer=streamer,
|
591 |
+
max_new_tokens=4096,
|
592 |
+
stopping_criteria=[stopping_criteria]
|
593 |
+
)
|
594 |
+
|
595 |
+
outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()
|
596 |
+
|
597 |
+
if outputs.endswith(stop_str):
|
598 |
+
outputs = outputs[:-len(stop_str)]
|
599 |
+
outputs = outputs.strip()
|
600 |
+
response_str = outputs
|
601 |
+
|
602 |
+
if render:
|
603 |
+
print('==============rendering===============')
|
604 |
+
from .render_tools import svg_to_html, content_mmd_to_html, tik_html, translation_table
|
605 |
+
|
606 |
+
if '**kern' in outputs:
|
607 |
+
import verovio
|
608 |
+
tk = verovio.toolkit()
|
609 |
+
tk.loadData(outputs)
|
610 |
+
tk.setOptions({"pageWidth": 2100, "footer": 'none',
|
611 |
+
'barLineWidth': 0.5, 'beamMaxSlope': 15,
|
612 |
+
'staffLineWidth': 0.2, 'spacingStaff': 6})
|
613 |
+
tk.getPageCount()
|
614 |
+
svg = tk.renderToSVG()
|
615 |
+
svg = svg.replace("overflow=\"inherit\"", "overflow=\"visible\"")
|
616 |
+
|
617 |
+
svg_to_html(svg, save_render_file)
|
618 |
+
|
619 |
+
if ocr_type == 'format' and '**kern' not in outputs:
|
620 |
+
|
621 |
+
|
622 |
+
if '\\begin{tikzpicture}' not in outputs:
|
623 |
+
html_path_2 = save_render_file
|
624 |
+
right_num = outputs.count('\\right')
|
625 |
+
left_num = outputs.count('\left')
|
626 |
+
|
627 |
+
if right_num != left_num:
|
628 |
+
outputs = outputs.replace('\left(', '(').replace('\\right)', ')').replace('\left[', '[').replace('\\right]', ']').replace('\left{', '{').replace('\\right}', '}').replace('\left|', '|').replace('\\right|', '|').replace('\left.', '.').replace('\\right.', '.')
|
629 |
+
|
630 |
+
|
631 |
+
outputs = outputs.replace('"', '``').replace('$', '')
|
632 |
+
|
633 |
+
outputs_list = outputs.split('\n')
|
634 |
+
gt= ''
|
635 |
+
for out in outputs_list:
|
636 |
+
gt += '"' + out.replace('\\', '\\\\') + r'\n' + '"' + '+' + '\n'
|
637 |
+
|
638 |
+
gt = gt[:-2]
|
639 |
+
|
640 |
+
|
641 |
+
lines = content_mmd_to_html
|
642 |
+
lines = lines.split("const text =")
|
643 |
+
new_web = lines[0] + 'const text =' + gt + lines[1]
|
644 |
+
|
645 |
+
else:
|
646 |
+
html_path_2 = save_render_file
|
647 |
+
outputs = outputs.translate(translation_table)
|
648 |
+
outputs_list = outputs.split('\n')
|
649 |
+
gt= ''
|
650 |
+
for out in outputs_list:
|
651 |
+
if out:
|
652 |
+
if '\\begin{tikzpicture}' not in out and '\\end{tikzpicture}' not in out:
|
653 |
+
while out[-1] == ' ':
|
654 |
+
out = out[:-1]
|
655 |
+
if out is None:
|
656 |
+
break
|
657 |
+
|
658 |
+
if out:
|
659 |
+
if out[-1] != ';':
|
660 |
+
gt += out[:-1] + ';\n'
|
661 |
+
else:
|
662 |
+
gt += out + '\n'
|
663 |
+
else:
|
664 |
+
gt += out + '\n'
|
665 |
+
|
666 |
+
|
667 |
+
lines = tik_html
|
668 |
+
lines = lines.split("const text =")
|
669 |
+
new_web = lines[0] + gt + lines[1]
|
670 |
+
|
671 |
+
with open(html_path_2, 'w') as web_f_new:
|
672 |
+
web_f_new.write(new_web)
|
673 |
+
return response_str
|
674 |
+
|
675 |
+
def dynamic_preprocess(self, image, min_num=1, max_num=6, image_size=1024, use_thumbnail=True):
|
676 |
+
|
677 |
+
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
678 |
+
best_ratio_diff = float('inf')
|
679 |
+
best_ratio = (1, 1)
|
680 |
+
area = width * height
|
681 |
+
for ratio in target_ratios:
|
682 |
+
target_aspect_ratio = ratio[0] / ratio[1]
|
683 |
+
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
684 |
+
if ratio_diff < best_ratio_diff:
|
685 |
+
best_ratio_diff = ratio_diff
|
686 |
+
best_ratio = ratio
|
687 |
+
elif ratio_diff == best_ratio_diff:
|
688 |
+
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
689 |
+
best_ratio = ratio
|
690 |
+
# print(f'width: {width}, height: {height}, best_ratio: {best_ratio}')
|
691 |
+
return best_ratio
|
692 |
+
|
693 |
+
orig_width, orig_height = image.size
|
694 |
+
aspect_ratio = orig_width / orig_height
|
695 |
+
|
696 |
+
# calculate the existing image aspect ratio
|
697 |
+
target_ratios = set(
|
698 |
+
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
|
699 |
+
i * j <= max_num and i * j >= min_num)
|
700 |
+
# print(target_ratios)
|
701 |
+
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
702 |
+
|
703 |
+
# find the closest aspect ratio to the target
|
704 |
+
target_aspect_ratio = find_closest_aspect_ratio(
|
705 |
+
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
706 |
+
|
707 |
+
# print(target_aspect_ratio)
|
708 |
+
# calculate the target width and height
|
709 |
+
target_width = image_size * target_aspect_ratio[0]
|
710 |
+
target_height = image_size * target_aspect_ratio[1]
|
711 |
+
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
712 |
+
|
713 |
+
# resize the image
|
714 |
+
resized_img = image.resize((target_width, target_height))
|
715 |
+
processed_images = []
|
716 |
+
for i in range(blocks):
|
717 |
+
box = (
|
718 |
+
(i % (target_width // image_size)) * image_size,
|
719 |
+
(i // (target_width // image_size)) * image_size,
|
720 |
+
((i % (target_width // image_size)) + 1) * image_size,
|
721 |
+
((i // (target_width // image_size)) + 1) * image_size
|
722 |
+
)
|
723 |
+
# split the image
|
724 |
+
split_img = resized_img.crop(box)
|
725 |
+
processed_images.append(split_img)
|
726 |
+
assert len(processed_images) == blocks
|
727 |
+
if use_thumbnail and len(processed_images) != 1:
|
728 |
+
thumbnail_img = image.resize((image_size, image_size))
|
729 |
+
processed_images.append(thumbnail_img)
|
730 |
+
return processed_images
|
731 |
+
|
732 |
+
|
733 |
+
def chat_crop(self, tokenizer, image_file, ocr_type, render=False, save_render_file=None, print_prompt=False, gradio_input=False, stream_flag = False):
|
734 |
+
# Model
|
735 |
+
self.disable_torch_init()
|
736 |
+
multi_page=False
|
737 |
+
|
738 |
+
|
739 |
+
image_processor_high = GOTImageEvalProcessor(image_size=1024)
|
740 |
+
|
741 |
+
use_im_start_end = True
|
742 |
+
|
743 |
+
|
744 |
+
image_token_len = 256
|
745 |
+
|
746 |
+
image_list = []
|
747 |
+
|
748 |
+
# if len(image_file_list)>1:
|
749 |
+
# multi_page = True
|
750 |
+
|
751 |
+
if multi_page:
|
752 |
+
qs = 'OCR with format across multi pages: '
|
753 |
+
# only for png files
|
754 |
+
# import glob
|
755 |
+
# from natsort import natsorted
|
756 |
+
# patches = glob.glob(image_file + '/*png')
|
757 |
+
patches = image_file
|
758 |
+
# patches = natsorted(patches)
|
759 |
+
sub_images = []
|
760 |
+
for sub_image in patches:
|
761 |
+
sub_images.append(self.load_image(sub_image))
|
762 |
+
|
763 |
+
ll = len(patches)
|
764 |
+
# print(patches)
|
765 |
+
# print("len ll: ", ll)
|
766 |
+
|
767 |
+
else:
|
768 |
+
if ocr_type == 'format':
|
769 |
+
qs = 'OCR with format upon the patch reference: '
|
770 |
+
else:
|
771 |
+
qs = 'OCR upon the patch reference: '
|
772 |
+
if gradio_input:
|
773 |
+
img = image_file.copy()
|
774 |
+
else:
|
775 |
+
img = self.load_image(image_file)
|
776 |
+
sub_images = self.dynamic_preprocess(img)
|
777 |
+
ll = len(sub_images)
|
778 |
+
|
779 |
+
for image in sub_images:
|
780 |
+
image_tensor_1 = image_processor_high(image)
|
781 |
+
image_list.append(image_tensor_1)
|
782 |
+
|
783 |
+
|
784 |
+
image_list = torch.stack(image_list)
|
785 |
+
|
786 |
+
print('====new images batch size======: \n',image_list.shape)
|
787 |
+
|
788 |
+
|
789 |
+
if use_im_start_end:
|
790 |
+
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_PATCH_TOKEN*image_token_len*ll + DEFAULT_IM_END_TOKEN + '\n' + qs
|
791 |
+
else:
|
792 |
+
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
|
793 |
+
|
794 |
+
|
795 |
+
conv_mpt = Conversation(
|
796 |
+
system="""<|im_start|>system
|
797 |
+
You should follow the instructions carefully and explain your answers in detail.""",
|
798 |
+
# system = None,
|
799 |
+
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
|
800 |
+
version="mpt",
|
801 |
+
messages=(),
|
802 |
+
offset=0,
|
803 |
+
sep_style=SeparatorStyle.MPT,
|
804 |
+
sep="<|im_end|>",
|
805 |
+
)
|
806 |
+
|
807 |
+
conv = conv_mpt.copy()
|
808 |
+
conv.append_message(conv.roles[0], qs)
|
809 |
+
conv.append_message(conv.roles[1], None)
|
810 |
+
prompt = conv.get_prompt()
|
811 |
+
|
812 |
+
if print_prompt:
|
813 |
+
print(prompt)
|
814 |
+
|
815 |
+
inputs = tokenizer([prompt])
|
816 |
+
|
817 |
+
input_ids = torch.as_tensor(inputs.input_ids).cpu()
|
818 |
+
|
819 |
+
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
820 |
+
keywords = [stop_str]
|
821 |
+
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
822 |
+
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
823 |
+
|
824 |
+
if stream_flag:
|
825 |
+
with torch.autocast("cpu", dtype=torch.bfloat16):
|
826 |
+
output_ids = self.generate(
|
827 |
+
input_ids,
|
828 |
+
images=[image_list.half().cpu()],
|
829 |
+
do_sample=False,
|
830 |
+
num_beams = 1,
|
831 |
+
# no_repeat_ngram_size = 20,
|
832 |
+
streamer=streamer,
|
833 |
+
max_new_tokens=4096,
|
834 |
+
stopping_criteria=[stopping_criteria]
|
835 |
+
)
|
836 |
+
else:
|
837 |
+
with torch.autocast("cpu", dtype=torch.bfloat16):
|
838 |
+
output_ids = self.generate(
|
839 |
+
input_ids,
|
840 |
+
images=[image_list.half().cpu()],
|
841 |
+
do_sample=False,
|
842 |
+
num_beams = 1,
|
843 |
+
# no_repeat_ngram_size = 20,
|
844 |
+
# streamer=streamer,
|
845 |
+
max_new_tokens=4096,
|
846 |
+
stopping_criteria=[stopping_criteria]
|
847 |
+
)
|
848 |
+
|
849 |
+
outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()
|
850 |
+
|
851 |
+
if outputs.endswith(stop_str):
|
852 |
+
outputs = outputs[:-len(stop_str)]
|
853 |
+
outputs = outputs.strip()
|
854 |
+
response_str = outputs
|
855 |
+
|
856 |
+
if render:
|
857 |
+
print('==============rendering===============')
|
858 |
+
from .render_tools import content_mmd_to_html
|
859 |
+
html_path_2 = save_render_file
|
860 |
+
right_num = outputs.count('\\right')
|
861 |
+
left_num = outputs.count('\left')
|
862 |
+
|
863 |
+
if right_num != left_num:
|
864 |
+
outputs = outputs.replace('\left(', '(').replace('\\right)', ')').replace('\left[', '[').replace('\\right]', ']').replace('\left{', '{').replace('\\right}', '}').replace('\left|', '|').replace('\\right|', '|').replace('\left.', '.').replace('\\right.', '.')
|
865 |
+
|
866 |
+
|
867 |
+
outputs = outputs.replace('"', '``').replace('$', '')
|
868 |
+
|
869 |
+
outputs_list = outputs.split('\n')
|
870 |
+
gt= ''
|
871 |
+
for out in outputs_list:
|
872 |
+
gt += '"' + out.replace('\\', '\\\\') + r'\n' + '"' + '+' + '\n'
|
873 |
+
|
874 |
+
gt = gt[:-2]
|
875 |
+
|
876 |
+
lines = content_mmd_to_html
|
877 |
+
lines = lines.split("const text =")
|
878 |
+
new_web = lines[0] + 'const text =' + gt + lines[1]
|
879 |
+
|
880 |
+
with open(html_path_2, 'w') as web_f_new:
|
881 |
+
web_f_new.write(new_web)
|
882 |
+
|
883 |
return response_str
|