File size: 7,792 Bytes
4bb3919
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b3e815
9d9fb42
3b3e815
 
 
 
4bb3919
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
---
tags:
- merge
- mergekit
- lazymergekit
- anthracite-org/magnum-v2-12b
- Trappu/Nemo-Picaro-12B
base_model:
- anthracite-org/magnum-v2-12b
- Trappu/Nemo-Picaro-12B
model-index:
- name: Magnum-Picaro-0.7-v2-12b
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 30.03
      name: strict accuracy
    source:
      url: >-
        https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=Trappu/Magnum-Picaro-0.7-v2-12b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 35.75
      name: normalized accuracy
    source:
      url: >-
        https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=Trappu/Magnum-Picaro-0.7-v2-12b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 4.76
      name: exact match
    source:
      url: >-
        https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=Trappu/Magnum-Picaro-0.7-v2-12b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 9.73
      name: acc_norm
    source:
      url: >-
        https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=Trappu/Magnum-Picaro-0.7-v2-12b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 19.56
      name: acc_norm
    source:
      url: >-
        https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=Trappu/Magnum-Picaro-0.7-v2-12b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 28.67
      name: accuracy
    source:
      url: >-
        https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=Trappu/Magnum-Picaro-0.7-v2-12b
      name: Open LLM Leaderboard
license: apache-2.0
pipeline_tag: text-generation
library_name: transformers
---

5bpw EXL2 quantization of Trappu's [Magnum-Picaro-0.7-v2-12b](https://huggingface.co./Trappu/Magnum-Picaro-0.7-v2-12b).

Instruct format: ChatML preferred, Mistral possible

Origin repo model card info👇 

# Details

This model is a merge between [Trappu/Nemo-Picaro-12B](https://huggingface.co./Trappu/Nemo-Picaro-12B), a model trained on my own little dataset free of synthetic data, which focuses solely on storywriting and scenrio prompting (Example: `[ Scenario: bla bla bla; Tags: bla bla bla ]`), and [anthracite-org/magnum-v2-12b](https://huggingface.co./anthracite-org/magnum-v2-12b).

The reason why I decided to merge it with Magnum (and don't recommend Picaro alone) is because that model, aside from its obvious flaws (rampant impersonation, stupid, etc...), is a one-trick pony and will be really rough for the average LLM user to handle. The idea was to have Magnum work as some sort of stabilizer to fix the issues that emerge from the lack of multiturn/smart data in Picaro's dataset. It worked, I think. I enjoy the outputs and it's smart enough to work with.

But yeah the goal of this merge was to make a model that's both good at storytelling/narration but also fine when it comes to other forms of creative writing such as RP or chatting. I don't think it's quite there yet but it's something for sure.

# Prompting

As explained before, Picaro is a model that functions mainly through scenario prompting but merging it with Magnum has made it a lot more versatile so you can use it however you see fit. Both models were trained on chatml so below is the recommended prompt formatting.

```
<|im_start|>system
system prompt<|im_end|>
<|im_start|>user
bla bla bla<|im_end|>
<|im_start|>assistant
bla bla bla you!<|im_end|>
```

For SillyTavern users:

[Instruct template](https://firebasestorage.googleapis.com/v0/b/koios-academy.appspot.com/o/trappu%2FChatML%20custom%20Instruct%20template.json?alt=media&token=9142757f-811c-460c-ad0e-d04951b1687f)

[Context template](https://firebasestorage.googleapis.com/v0/b/koios-academy.appspot.com/o/trappu%2FChatML%20custom%20context%20template.json?alt=media&token=0926fc67-fa9f-4c86-ad16-8c7c4c8e0b64)

[Settings preset](https://firebasestorage.googleapis.com/v0/b/koios-academy.appspot.com/o/trappu%2FHigh%20temp%20-%20Min%20P%20(4).json?alt=media&token=ac569562-af11-4da1-83c1-d86b25bb4fe1)

The above settings are the ones I recommend. 

Temp = 1.2

Min P = 0.1

DRY Rep Pen: Multiplier = 0.8, Base = 1.75, Allowed Length = 2, Penalty Range = 1024

Little guide on useful samplers and how to import settings presets and instruct/context templates and other stuff people might find useful [here](https://rentry.co/PygmalionFAQ#q-what-are-the-best-settings-for-rpadventurenarrationchatting)

Every other sampler neutralized.

# Quants

Imatrix: https://huggingface.co./mradermacher/Magnum-Picaro-0.7-v2-12b-i1-GGUF

Static: https://huggingface.co./mradermacher/Magnum-Picaro-0.7-v2-12b-GGUF


# Magnum-Picaro-0.7-v2-12b

Magnum-Picaro-0.7-v2-12b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [Trappu/Nemo-Picaro-12B](https://huggingface.co./Trappu/Nemo-Picaro-12B)
* [anthracite-org/magnum-v2-12b](https://huggingface.co./anthracite-org/magnum-v2-12b)

## 🧩 Configuration

```yaml
models:
    - model: Trappu/Nemo-Picaro-12B
      parameters:
        density: 0.7
        weight: 0.5
    - model: anthracite-org/magnum-v2-12b
      parameters:
        density: 0.3
        weight: 0.5

merge_method: ties
base_model: Trappu/Nemo-Picaro-12B
parameters:
    normalize: true
    int8_mask: true
dtype: bfloat16

```

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Trappu/Magnum-Picaro-0.7-v2-12b"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_Trappu__Magnum-Picaro-0.7-v2-12b)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |21.42|
|IFEval (0-Shot)    |30.03|
|BBH (3-Shot)       |35.75|
|MATH Lvl 5 (4-Shot)| 4.76|
|GPQA (0-shot)      | 9.73|
|MuSR (0-shot)      |19.56|
|MMLU-PRO (5-shot)  |28.67|