RomainDarous's picture
Add new SentenceTransformer model
c3c768f verified
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:4460010
- loss:CoSENTLoss
base_model: RomainDarous/pre_training_original_model
widget:
- source_sentence: Malformed target specific variable definition
sentences:
- Hedefe özgü değişken tanımı bozuk
- Kan alle data in die gids lees
- "слава Украине! героям слава!\uFEFF"
- source_sentence: Can't write an inode bitmap
sentences:
- Skontrolujte stav aktualizácií alebo to skúste znova neskôr.
- Malsukcesis skribi i nodan bitmapon
- Zastępuje wersję GL obsługiwaną przez sterownik
- source_sentence: Optimize soft proofing color transformations
sentences:
- 'arkadaslar biz artik her an kirmizi kart yiyecek,bencil,pas yapamayan,isabetsiz
orta yapani istemiyoruz. sozde efsaneniz bu sezon Besiktasa en cok zarar verenlerden
biriydi. kendini dusunmeden once Besiktasi dusunecek adam lazim bize. o yuzden
#GoHomeQuaresma'
- Yav bizim dedikodusunu yaptığımız insanın bile bi vizyonu var. Senin hakkında
neden oturup konuşalım?
- Ik ben een transgender.
- source_sentence: 'Pass 1: Checking @is, @bs, and sizes'
sentences:
- Bu adam cidden kurabiye gibi ben bunu çayın yanında yerim
- sagnat. errada. invisible. justificació. idioma
- Wilt u echt de primaire sleutel verplaatsen? (j N)
- source_sentence: Search for matching log entries
sentences:
- quem te lembra? caralho assustada aqui kkkkk
- sendotasunik gabeko\ egoera bistaratuko den ala ez adierazten du
- En aquest cas, hem d'incloure les imatges del contenidor )sr iov per a càrregues
de treball de telco (per exemple, com a referència, es podrien obtenir des de
valors de helm chart)
datasets:
- RomainDarous/corrupted_os_by_language
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on RomainDarous/pre_training_original_model
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts eval
type: sts-eval
metrics:
- type: pearson_cosine
value: 0.9689986767988773
name: Pearson Cosine
- type: spearman_cosine
value: 0.864476081512947
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.9708214027875265
name: Pearson Cosine
- type: spearman_cosine
value: 0.8646288446650711
name: Spearman Cosine
---
# SentenceTransformer based on RomainDarous/pre_training_original_model
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [RomainDarous/pre_training_original_model](https://huggingface.co./RomainDarous/pre_training_original_model) on the [corrupted_open_os_by_language](https://huggingface.co./datasets/RomainDarous/corrupted_os_by_language) dataset. It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [RomainDarous/pre_training_original_model](https://huggingface.co./RomainDarous/pre_training_original_model) <!-- at revision 880d5ef9d016fb1257687b6b61da19f4978b0f0c -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 512 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [corrupted_open_os_by_language](https://huggingface.co./datasets/RomainDarous/corrupted_os_by_language)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("RomainDarous/finetuned_original_model")
# Run inference
sentences = [
'Search for matching log entries',
'quem te lembra? caralho tô assustada aqui kkkkk',
'sendotasunik gabeko\\ egoera bistaratuko den ala ez adierazten du',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 512]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Datasets: `sts-eval` and `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | sts-eval | sts-test |
|:--------------------|:-----------|:-----------|
| pearson_cosine | 0.969 | 0.9708 |
| **spearman_cosine** | **0.8645** | **0.8646** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### corrupted_open_os_by_language
* Dataset: [corrupted_open_os_by_language](https://huggingface.co./datasets/RomainDarous/corrupted_os_by_language) at [9d25780](https://huggingface.co./datasets/RomainDarous/corrupted_os_by_language/tree/9d25780e2032b1e8f06af6a4ff55124d7a930c3c)
* Size: 4,460,010 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 6 tokens</li><li>mean: 18.49 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 30.77 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>0: ~50.60%</li><li>1: ~49.40%</li></ul> |
* Samples:
| sentence1 | sentence2 | score |
|:--------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------|:---------------|
| <code>Check spelling. Print the document. Show completion window. General. Show help</code> | <code>Kontrolli õigekirja. присоединяюсь. </code> | <code>0</code> |
| <code>EXIF not supported for this file format.</code> | <code>Šiam failo formatui EXIF nepalaikomas.</code> | <code>1</code> |
| <code>This package includes the documentation for texlive everyhook</code> | <code>Paket ini menyertakan dokumentasi untuk texlive everyhook</code> | <code>1</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
### Evaluation Dataset
#### corrupted_open_os_by_language
* Dataset: [corrupted_open_os_by_language](https://huggingface.co./datasets/RomainDarous/corrupted_os_by_language) at [9d25780](https://huggingface.co./datasets/RomainDarous/corrupted_os_by_language/tree/9d25780e2032b1e8f06af6a4ff55124d7a930c3c)
* Size: 4,460,010 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 5 tokens</li><li>mean: 17.92 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 31.1 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>0: ~50.60%</li><li>1: ~49.40%</li></ul> |
* Samples:
| sentence1 | sentence2 | score |
|:----------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
| <code>Could not identify the current seat.</code> | <code> 天天花着男人的钱还这这创造新词汇男权你可真牛批,你也就这一出了一问男权,就说是我是吧,到现在我也没听到你给我们讲的男权,你也就是在网上喷喷,现实走道都不敢探头自卑,你现实要把你女权的劲拿出来总低啥头,您老应该去国家教育局把男权加上是吧,你们女权天天说自己生活不好没地位,给你们地位了你们能干啥?用你们的女权打到全世界男性是吧,能相出男权这一词您老也是人才呀,是不是庆幸自己是个女的,活在自己想想的世界里不觉得孤单吗,假象有男权是吧,自己假象和男权还说自己不是田园女权,田园女权能连自己都骂说自己妈是驴爸是大鼎的也是奇葩呀,那我们国家大肆宣扬过你们这么田园女权吗,国家要的是女性人群自主自理,你们可好看看你们女权干的啥事,给你们女权地位高了,看看你们女权干的事n绿地集团高管怎么都不说呀,人家可是有钱有地位,也不是我们说三从四德洗衣做饭你们女权会吗?,那我问问你们女权干过啥惊天大事,还甩锅给孔子,还封建社会,那我问问你们女权在福利面前为啥说自己是女性呀不是社会主义社会吗不应该男女平等吗,天天自己也不知道是不是抱个手机天天欧巴欧巴,你家那位要是不陪你看一会就会问你是不是不爱我了是吧大姐,您老也就赚这白菜钱操心国家事,中国五千年的历史被您老一句否决,还嘲讽人家日本女性,好意思说自己不是女权,三从四德流传这么久到您这变成日本文化了,我就想问问男权您老是怎么想的,那你问孔子老人家呗为什么女人要三从四德,我说的是女权你干嘛自己对号入座,连中华人民传承的东西都不认跟我这谈男权,还男权您老给我举个例子呗,让我们男权听听都是h啥,这些不都是你们女权的标准吗?,还男权,您老醒醒吧这里是现实,不是你的公主世界,总觉得自己多么多么重要,地球没你是不能转了还是人类要灭亡呀,我真的想问一句你给我找一条男权的新闻,咋了我们男人不能提女权呗你老授权了呗,那我们谈论田园女权你老对号入座干嘛,天天过节要礼物,还嫌弃自己男朋友没有钱,我寻思你找个有钱人包养你呗,对了有钱人怎么可能看上你这种女权的呢,还要孩子跟女方姓我也没看见你没跟你妈姓呀,年年过节男人给你们送礼物你们女人给男人送过礼物吗?,一问我不是陪着他吗我对他说我爱你了这不是最好的礼物吗?,男人只要不送礼物就是不爱你们了呗,人家国际女权讲的男人能做的我们女人也能做,田园女权男人能做的我们女人为啥要做,还男权我笑了,以前结婚几头牛换个衣服原装的,现在几十万彩...</code> | <code>0</code> |
| <code>Undoing Date and Time Adjustment</code> | <code>正在取消日期和时间调整</code> | <code>1</code> |
| <code>Dependency package for gsl_2_6 gnu hpc</code> | <code>Pacotes de desenvolvimento do KDE</code> | <code>1</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `num_train_epochs`: 4
- `warmup_ratio`: 0.1
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | corrupted open os by language loss | sts-eval_spearman_cosine | sts-test_spearman_cosine |
|:------:|:------:|:-------------:|:----------------------------------:|:------------------------:|:------------------------:|
| 1.0343 | 57665 | 2.9576 | 1.9103 | 0.8624 | - |
| 2.0687 | 115330 | 1.2122 | 1.3566 | 0.8637 | - |
| 3.1030 | 172995 | 0.476 | 0.9238 | 0.8645 | - |
| 4.0 | 223004 | - | - | - | 0.8646 |
### Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.3.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### CoSENTLoss
```bibtex
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->