{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e87ab646a00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690881199047264913, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOUwr0UsJy6VYGGOho23TVLx5I60fOYuQAAAAAAAIA/TcfUvYULrLkIkdO6xG7VtOMHdrsSNfc5AAAAAAAAgD9mhkq8e66auq5wazhN1I4y7RzjunNahrcAAIA/AACAP3pmHL6Stz8/j2GkPXV4rL5jKs69HnKJPQAAAAAAAAAATaqnPVKA1blbIr47PN+xOHKm0rp5wze6AACAPwAAAABmu4u8BWO5u019TTvZlI08PUQcvSIWcD0AAIA/AACAPwAAQztcI3+6UTgmuLOBELOEEVG7IQxCNwAAgD8AAIA/zRwYO0iTwLwKbUm4xWIfPZruLD6GsPC9AACAPwAAgD9Nnqk9FO6Ous0yPDqgEWm2zA3zuuO2VrUAAIA/AACAPzNr6zuP3me6dr2vO2zYDji3RnK6+ulBtgAAgD8AAIA/Gmh/vXs+sLqANjg7NRO7N/rMH7rBEwa6AACAPwAAgD8aXFO9j24mupHBnrXU/5ywqcj/OeUVqDQAAIA/AACAP+YUS71c80i6/66Nt8A5E7MqExM60WmjNgAAgD8AAIA/mj2MPB9N+LlQBfk23kc3MtTOSjtwoRC2AACAPwAAgD8zS5M7XNtjuvDMVzrvMkE1tQgzuhCVfbkAAIA/AACAP2at+bwQHKM+GKNgPhzZnL5+YRE+THyLPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVOQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGaZWvB7/n6MAWyUTegDjAF0lEdAkeYGwaBI4HV9lChoBkdAaWM/wiJO32gHTegDaAhHQJHoQlhPTG51fZQoaAZHQGcEIPTXrdFoB03oA2gIR0CR6SsKLKmsdX2UKGgGR0BoQuaz/p+uaAdN6ANoCEdAkerUUsWfsnV9lChoBkdAZA16NVBD5WgHTegDaAhHQJH44yZa3Zx1fZQoaAZHQGKds2m51/5oB03oA2gIR0CR+ReLehwmdX2UKGgGR0BieWDYh+vyaAdN6ANoCEdAkf5LuUliSnV9lChoBkdAY1pOdoWYW2gHTegDaAhHQJIAXzg/C691fZQoaAZHQGGZ/5ckdFRoB03oA2gIR0CSBJJiy6czdX2UKGgGR0BiB+qNp/PPaAdN6ANoCEdAkgd8GcFyJnV9lChoBkdAZ5EGcFyJbmgHTegDaAhHQJII/bblA/t1fZQoaAZHQGkiTj/+85FoB03oA2gIR0CSEp2TxG2DdX2UKGgGR0BlO+CNCJGfaAdN6ANoCEdAkhVCZSeiBXV9lChoBkdAYZBezD4xlGgHTegDaAhHQJIWR9LHuJF1fZQoaAZHQGTkx+jM3ZRoB03oA2gIR0CSG0nIQvpRdX2UKGgGR0BhIOJLuhK2aAdN6ANoCEdAkh48CkoF3nV9lChoBkdAYFnst03fh2gHTegDaAhHQJIff7cfvF51fZQoaAZHQGWkD1oQFs5oB03oA2gIR0CSMTVbzK9xdX2UKGgGR0BlpJD3M6ikaAdN6ANoCEdAkjH3oxHoYHV9lChoBkdAXwE6kqMFU2gHTegDaAhHQJIzVN9H+ZR1fZQoaAZHQGdmXA/LTx5oB03oA2gIR0CSQdWhh6SldX2UKGgGR0BmxMCT2WY4aAdN6ANoCEdAkkIERe1KG3V9lChoBkdAaPc9vjwQUmgHTegDaAhHQJJGh9qk/KR1fZQoaAZHQGUuw5eZ5RloB03oA2gIR0CSSJJ2dNFjdX2UKGgGR0Bl/sCeVcD9aAdN6ANoCEdAkkyJvo/zKHV9lChoBkdAZuYF4cFQmGgHTegDaAhHQJJO3Dxb0OF1fZQoaAZHQGFV/nGKhtdoB03oA2gIR0CSUBh7E5yVdX2UKGgGR0BmxrTSb6P9aAdN6ANoCEdAkll1+AmReXV9lChoBkdAUf8GgSOBD2gHS+toCEdAklmxx5s0pHV9lChoBkdAcpTvKEFnqWgHTcwCaAhHQJJaFwR5C4V1fZQoaAZHQGB6fuTibUhoB03oA2gIR0CSXGE25xzadX2UKGgGR0BiX6RB/qgRaAdN6ANoCEdAkl2aVD8cdnV9lChoBkdAY356Y3Ns32gHTegDaAhHQJJi6uW8h9t1fZQoaAZHQG68VaGHpKVoB02IAWgIR0CSZlBZZB9kdX2UKGgGR0Bj0tVPva11aAdN6ANoCEdAkmauNxVAA3V9lChoBkdAaOmqqfe1r2gHTegDaAhHQJJoXKZDzAh1fZQoaAZHQEz7Xo1UEPloB0vRaAhHQJJooHryDqZ1fZQoaAZHQGO6wF9roGJoB03oA2gIR0CSfDG2TgVHdX2UKGgGR0Bw0TLidat+aAdN4ANoCEdAkn01yBClanV9lChoBkdALjLg4wRGt2gHS+9oCEdAkoN4B3iaRnV9lChoBkdAbkOWM0gr6WgHTdgDaAhHQJKIydnTRY11fZQoaAZHQGhnWznied1oB03oA2gIR0CSiYmapgkUdX2UKGgGR0BlK2bNKRMfaAdN6ANoCEdAko52X9itrHV9lChoBkdAYAo+Y+jdpWgHTegDaAhHQJKQem65Gz91fZQoaAZHQGJfW5hBqsVoB03oA2gIR0CSmIZXuE26dX2UKGgGR0BkeCHwgDA8aAdN6ANoCEdAkqUkVafSQnV9lChoBkdAXvN0Syt3fWgHTegDaAhHQJKlahSLqD91fZQoaAZHQF7G8a4tpVVoB03oA2gIR0CSpd13t8eCdX2UKGgGR0BxBvdP+GXYaAdNjQFoCEdAkqiDKT0QLHV9lChoBkdAYqqqBmPHUGgHTegDaAhHQJKpUdYGMXJ1fZQoaAZHQHLe1GgBcRloB02LAmgIR0CSq43VkMCtdX2UKGgGR0Bx1g7hegL7aAdNugNoCEdAkqwXmig00nV9lChoBkdAZLTSQ5myxGgHTegDaAhHQJKxQ+5e7cx1fZQoaAZHQEYj6a9bor5oB0vkaAhHQJKxUkX1rZd1fZQoaAZHQGSKSc0+C9RoB03oA2gIR0CSsot7rs0IdX2UKGgGR0Bj3lUMoc7yaAdN6ANoCEdAkrK+ueSSvHV9lChoBkdASVmiUPhAGGgHS91oCEdAkrQ2iUPhAHV9lChoBkdAYjSRKYiPhmgHTegDaAhHQJK0/3wkPc11fZQoaAZHQGJVLOiWVu9oB03oA2gIR0CSxokhib2EdX2UKGgGR0Byk62NNrTIaAdNgQJoCEdAksyQLZzxPXV9lChoBkdAIqEroW56MWgHS+BoCEdAks3IcFQl8nV9lChoBkdAcJ1jiGWUr2gHTY0BaAhHQJLPXibUgB91fZQoaAZHQGUMyPU8V59oB03oA2gIR0CS0biNsFdLdX2UKGgGR0BeqvEsJ6Y3aAdN6ANoCEdAktJb4nF5wHV9lChoBkdAcxV/O+qR2mgHTWMBaAhHQJLWBikO7QN1fZQoaAZHQGy+DFZPl+5oB02lAWgIR0CS1kYGt6omdX2UKGgGR0Bgo8WhysCDaAdN6ANoCEdAktifdRBNVXV9lChoBkdAbePr30wrUmgHTZoBaAhHQJLZ4n0Cih51fZQoaAZHQGaqMNUfgaZoB03oA2gIR0CS6ZLSeAd5dX2UKGgGR0BkFvbO/tY0aAdN6ANoCEdAkuo0jC53DHV9lChoBkdAYPWUMXrMT2gHTegDaAhHQJLss5myxA11fZQoaAZHQGY0KJdjXnRoB03oA2gIR0CS8G1yvLX+dX2UKGgGR0BtPUtRNyo5aAdNrgNoCEdAkvMOfZmI03V9lChoBkdAbFbY/Vy3kWgHTYsDaAhHQJL3p99c8kl1fZQoaAZHQGLoX9aUzKtoB03oA2gIR0CS+Qu3+dbxdX2UKGgGR0BvIEeQuEmIaAdNegJoCEdAkvpci8nNPnV9lChoBkdAcKgmEXcgyWgHTVUDaAhHQJMN2p3os7N1fZQoaAZHQG72seGO+7FoB016AWgIR0CTDuNt65XmdX2UKGgGR0BiD/KlpGnXaAdN6ANoCEdAkxHEtuk1uXV9lChoBkdAbc+2pAD7qWgHTYEDaAhHQJMSmKziS7p1fZQoaAZHQGHOdLQHAypoB03oA2gIR0CTEvjzqbBodX2UKGgGR0BxJCcslLOBaAdNwQFoCEdAkxQKO1fE43V9lChoBkdAcQVB8hLXc2gHTRIDaAhHQJMUFlDneSB1fZQoaAZHQHBuu/5+H8FoB01AA2gIR0CTFN/ub7TEdX2UKGgGR0BuRcA5q/M4aAdNHAFoCEdAkxVvywwCbXV9lChoBkdAYHXRbbDdg2gHTegDaAhHQJMV/Q+lj3F1fZQoaAZHQHCxtZid8RdoB01xAWgIR0CTF52bXpW4dX2UKGgGR0BmN4R28qWkaAdN6ANoCEdAkxjyKekHlnV9lChoBkdAMG4/3WWhRWgHS8toCEdAkxo4f0VafXV9lChoBkdAP39+kP+XJGgHS9VoCEdAkxpGfGuLaXV9lChoBkdAU82w2VE/jmgHS/BoCEdAkx8morFwUHV9lChoBkdAcpsoDxLCemgHTccBaAhHQJMgFfUnXup1fZQoaAZHQE1FAIIF/x5oB0v3aAhHQJMh0ByS3b51fZQoaAZHQHHhtt/FzdVoB02CAmgIR0CTJrIIWxhVdX2UKGgGR0BnpQA0bcXWaAdN6ANoCEdAkyrJDRc/uHV9lChoBkdAbkbJlrdnCmgHTRwCaAhHQJMvIY64lQd1fZQoaAZHQGTTTQVsUItoB03oA2gIR0CTMXAdGRV7dX2UKGgGR0BjfJylvZRLaAdN6ANoCEdAkzOzB2wFDHV9lChoBkdAVN1ENOM2nGgHS8doCEdAkzT2/BWPtHV9lChoBkdAcRn5hScbzmgHTfICaAhHQJM38rFwT/R1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}