File size: 54,649 Bytes
904b97c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 |
import argparse
import math
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
import copy
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.amp import autocast, GradScaler
from datasets import load_dataset
from transformers import AutoTokenizer
# Set the device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def parse_args():
parser = argparse.ArgumentParser(description='Train World Model with Transformer outputs.')
parser.add_argument('--model_name', type=str, default='gpt2', help='Pretrained model name or path')
parser.add_argument('--dataset_name', type=str, default='wikitext', help='Dataset name from HuggingFace Datasets')
parser.add_argument('--dataset_config', type=str, default='wikitext-2-raw-v1', help='Dataset configuration name')
parser.add_argument('--batch_size', type=int, default=2, help='Batch size')
parser.add_argument('--num_epochs', type=int, default=3, help='Number of epochs')
parser.add_argument('--max_length', type=int, default=128, help='Maximum sequence length')
parser.add_argument('--mcts_iterations', type=int, default=5, help='Number of MCTS Iterations')
parser.add_argument('--mcts_exploration_constant', type=float, default=1.414, help='Learning rate')
parser.add_argument('--accumulation_steps', type=int, default=4, help='Gradient accumulation steps')
parser.add_argument('--learning_rate', type=float, default=1e-4, help='Learning rate')
parser.add_argument('--weight_decay', type=float, default=1e-2, help='Weight decay')
parser.add_argument('--alpha', type=float, default=0.1, help='Entropy regularization weight')
parser.add_argument('--beta', type=float, default=0.1, help='Variance regularization weight')
parser.add_argument('--max_grad_norm', type=float, default=1.0, help='Max gradient norm for clipping')
parser.add_argument('--save_dir', type=str, default='./models', help='Directory to save the models')
parser.add_argument('--temperature', type=float, default=1.0, help='Temperature parameter for entropy and variance')
parser.add_argument('--transformer_model_path', type=str, required=True, help='Path to the saved Transformer model')
args = parser.parse_args()
return args
def load_data(args, tokenizer):
# Load the dataset
dataset = load_dataset(args.dataset_name, args.dataset_config)
# Ensure the tokenizer has a padding token
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
def tokenize_function(examples):
return tokenizer(examples['text'], truncation=True, max_length=args.max_length)
tokenized_datasets = dataset.map(
tokenize_function,
batched=True,
num_proc=4,
remove_columns=dataset['train'].column_names,
)
# Build inputs and labels for language modeling
block_size = args.max_length
def group_texts(examples):
# Concatenate all texts
concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
total_length = len(concatenated_examples['input_ids'])
# We drop the small remainder
total_length = (total_length // block_size) * block_size
# Split by chunks of block_size
result = {
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
for k, t in concatenated_examples.items()
}
result['labels'] = result['input_ids'].copy()
return result
lm_datasets = tokenized_datasets.map(
group_texts,
batched=True,
num_proc=4,
)
# Create DataLoader
train_dataset = lm_datasets['train']
eval_dataset = lm_datasets['validation'] if 'validation' in lm_datasets else lm_datasets['test']
data_collator = lambda data: {
'input_ids': torch.tensor([f['input_ids'] for f in data], dtype=torch.long),
'labels': torch.tensor([f['labels'] for f in data], dtype=torch.long)
}
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=args.batch_size, collate_fn=data_collator)
eval_loader = DataLoader(eval_dataset, shuffle=False, batch_size=args.batch_size, collate_fn=data_collator)
return train_loader, eval_loader
def save_all_models(transformer_model, representation_network, dynamics_network, prediction_network, action_encoder, save_dir, epoch):
"""
Save all models to the specified directory.
Args:
transformer_model (nn.Module): Transformer model.
representation_network (nn.Module): Representation network.
dynamics_network (nn.Module): Dynamics network.
prediction_network (nn.Module): Prediction network.
action_encoder (nn.Module): Action encoder.
save_dir (str): Directory to save the models.
epoch (int): Current epoch number.
"""
os.makedirs(save_dir, exist_ok=True)
torch.save(transformer_model.state_dict(), os.path.join(save_dir, f'transformer_model_epoch_{epoch}.pt'))
torch.save(representation_network.state_dict(), os.path.join(save_dir, f'representation_network_epoch_{epoch}.pt'))
torch.save(dynamics_network.state_dict(), os.path.join(save_dir, f'dynamics_network_epoch_{epoch}.pt'))
torch.save(prediction_network.state_dict(), os.path.join(save_dir, f'prediction_network_epoch_{epoch}.pt'))
torch.save(action_encoder.state_dict(), os.path.join(save_dir, f'action_encoder_epoch_{epoch}.pt'))
print(f"All models saved for epoch {epoch}.")
class RotaryPositionalEncoding(nn.Module):
def __init__(self, d_model):
super(RotaryPositionalEncoding, self).__init__()
inv_freq = 1.0 / (10000 ** (torch.arange(0, d_model, 2).float() / d_model))
self.register_buffer('inv_freq', inv_freq)
def forward(self, x):
seq_len, batch_size, _ = x.size()
t = torch.arange(seq_len, device=x.device).type_as(self.inv_freq)
sinusoid_inp = torch.einsum("i,j->ij", t, self.inv_freq)
sin = sinusoid_inp.sin().unsqueeze(1) # (seq_len, 1, d_model/2)
cos = sinusoid_inp.cos().unsqueeze(1) # (seq_len, 1, d_model/2)
x1 = x[..., 0::2]
x2 = x[..., 1::2]
# Apply rotation
x_rotated = torch.zeros_like(x)
x_rotated[..., 0::2] = x1 * cos - x2 * sin
x_rotated[..., 1::2] = x1 * sin + x2 * cos
return x_rotated
class MultiHeadAttention(nn.Module):
def __init__(self, d_model, num_heads):
super(MultiHeadAttention, self).__init__()
assert d_model % num_heads == 0, "d_model must be divisible by num_heads"
self.d_k = d_model // num_heads
self.num_heads = num_heads
self.linear_q = nn.Linear(d_model, d_model)
self.linear_k = nn.Linear(d_model, d_model)
self.linear_v = nn.Linear(d_model, d_model)
self.linear_out = nn.Linear(d_model, d_model)
def forward(self, query, key, value, mask=None):
batch_size = query.size(0)
query = self.linear_q(query).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
key = self.linear_k(key).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
value = self.linear_v(value).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.d_k)
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e4)
attn = F.softmax(scores, dim=-1)
output = torch.matmul(attn, value)
output = output.transpose(1, 2).contiguous().view(batch_size, -1, self.num_heads * self.d_k)
return self.linear_out(output)
class MoE(nn.Module):
def __init__(self, d_model, num_experts, d_ff, top_k=2, dropout=0.1):
super(MoE, self).__init__()
self.num_experts = num_experts
self.top_k = top_k
self.experts = nn.ModuleList([
nn.Sequential(
nn.Linear(d_model, d_ff),
nn.GELU() if i % 2 == 0 else nn.SiLU(),
nn.Linear(d_ff, d_model)
)
for i in range(num_experts)
])
self.gate = nn.Linear(d_model, num_experts)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
batch_size, seq_len, d_model = x.size()
# Compute gating scores
gate_scores = self.gate(x) # (batch_size, seq_len, num_experts)
top_k_scores, top_k_indices = torch.topk(gate_scores, self.top_k, dim=-1) # (batch_size, seq_len, top_k)
top_k_scores = F.softmax(top_k_scores, dim=-1) # (batch_size, seq_len, top_k)
# Initialize output
output = torch.zeros_like(x)
# Flatten batch and sequence dimensions
x_flat = x.view(-1, d_model) # (batch_size * seq_len, d_model)
output_flat = output.view(-1, d_model)
top_k_indices_flat = top_k_indices.view(-1, self.top_k) # (batch_size * seq_len, top_k)
top_k_scores_flat = top_k_scores.view(-1, self.top_k) # (batch_size * seq_len, top_k)
for k in range(self.top_k):
expert_idx_flat = top_k_indices_flat[:, k] # (batch_size * seq_len)
expert_scores_flat = top_k_scores_flat[:, k] # (batch_size * seq_len)
for e in range(self.num_experts):
mask = (expert_idx_flat == e) # Boolean mask
if mask.any():
x_masked = x_flat[mask] # Select tokens for expert e
expert_output = self.experts[e](x_masked) # Apply expert e
output_flat[mask] += expert_scores_flat[mask].unsqueeze(-1) * expert_output
output = output_flat.view(batch_size, seq_len, d_model)
return self.dropout(output)
class TransformerBlock(nn.Module):
def __init__(self, d_model, num_heads, d_ff, num_experts, dropout=0.1, top_k=2):
super(TransformerBlock, self).__init__()
self.self_attention = MultiHeadAttention(d_model, num_heads)
self.norm1 = nn.LayerNorm(d_model)
self.cross_attention = MultiHeadAttention(d_model, num_heads)
self.norm2 = nn.LayerNorm(d_model)
self.moe = MoE(d_model, num_experts, d_ff, top_k, dropout)
self.norm3 = nn.LayerNorm(d_model)
def forward(self, x, mask=None, enc_output=None, enc_mask=None):
# Self-attention
attn_output = self.self_attention(x, x, x, mask)
x = self.norm1(x + attn_output)
# Cross-attention (only in decoder)
if enc_output is not None:
cross_attn_output = self.cross_attention(x, enc_output, enc_output, enc_mask)
x = self.norm2(x + cross_attn_output)
# Feedforward/MoE
moe_output = self.moe(x)
return self.norm3(x + moe_output)
class Transformer(nn.Module):
def __init__(self, input_dim, d_model, num_heads, num_layers, d_ff, num_experts, output_dim, dropout=0.1, top_k=2):
super(Transformer, self).__init__()
self.embedding = nn.Embedding(input_dim, d_model, padding_idx=input_dim - 1)
self.rotary_positional_encoding = RotaryPositionalEncoding(d_model)
self.encoder_layers = nn.ModuleList(
[TransformerBlock(d_model, num_heads, d_ff, num_experts, dropout, top_k) for _ in range(num_layers)]
)
self.decoder_layers = nn.ModuleList(
[TransformerBlock(d_model, num_heads, d_ff, num_experts, dropout, top_k) for _ in range(num_layers)]
)
self.output_layer = nn.Linear(d_model, output_dim)
self.d_model = d_model
def forward(self, src, tgt, src_mask=None, tgt_mask=None):
# Encoder
src = self.embedding(src) * math.sqrt(self.d_model)
src = src.transpose(0, 1) # (batch_size, seq_len, d_model) -> (seq_len, batch_size, d_model)
src = self.rotary_positional_encoding(src)
src = src.transpose(0, 1) # (seq_len, batch_size, d_model) -> (batch_size, seq_len, d_model)
for layer in self.encoder_layers:
src = layer(src, src_mask)
# Decoder
tgt = self.embedding(tgt) * math.sqrt(self.d_model)
tgt = tgt.transpose(0, 1)
tgt = self.rotary_positional_encoding(tgt)
tgt = tgt.transpose(0, 1)
for layer in self.decoder_layers:
tgt = layer(tgt, tgt_mask, src, src_mask)
output = self.output_layer(tgt)
return output
def generate(self, src, tokenizer, max_length=20, temperature=1.0):
"""
Generate sequences using differentiable sampling (Gumbel-Softmax).
Args:
src (torch.Tensor): Source input tensor of shape (batch_size, seq_len)
tokenizer (transformers.PreTrainedTokenizer): Tokenizer to access special tokens
max_length (int): Maximum length of the generated sequence
temperature (float): Temperature parameter for Gumbel-Softmax
Returns:
torch.Tensor: Generated sequences of shape (batch_size, max_length)
torch.Tensor: Entropy values for each time step
torch.Tensor: Variance values for each time step
"""
batch_size = src.size(0)
# Encode the source
src_enc = self.embedding(src) * math.sqrt(self.d_model)
src_enc = src_enc.transpose(0, 1)
src_enc = self.rotary_positional_encoding(src_enc)
src_enc = src_enc.transpose(0, 1)
for layer in self.encoder_layers:
src_enc = layer(src_enc)
# Initialize decoder input with <sos> tokens
tgt_seq = torch.full((batch_size, 1), tokenizer.bos_token_id, dtype=torch.long, device=src.device)
entropies = []
variances = []
for _ in range(max_length):
tgt_emb = self.embedding(tgt_seq) * math.sqrt(self.d_model)
tgt_emb = tgt_emb.transpose(0, 1)
tgt_emb = self.rotary_positional_encoding(tgt_emb)
tgt_emb = tgt_emb.transpose(0, 1)
tgt_dec = tgt_emb
for layer in self.decoder_layers:
tgt_dec = layer(tgt_dec, None, src_enc, None)
output = self.output_layer(tgt_dec) # (batch_size, seq_len, vocab_size)
logits = output[:, -1, :] # Get logits for the last time step
# Compute token probabilities
probs = F.softmax(logits / temperature, dim=-1) # (batch_size, vocab_size)
# Compute entropy
entropy = -torch.sum(probs * torch.log(probs + 1e-9), dim=-1) # (batch_size)
entropies.append(entropy)
# Sample token using Gumbel-Softmax
gumbel_noise = -torch.log(-torch.log(torch.rand_like(probs) + 1e-9) + 1e-9)
y = (logits + gumbel_noise) / temperature
y = F.softmax(y, dim=-1) # (batch_size, vocab_size)
# Compute variance
variance = torch.var(y, dim=-1) # (batch_size)
variances.append(variance)
# Get token indices (argmax for hard selection)
next_tokens = torch.argmax(y, dim=-1, keepdim=True) # (batch_size, 1)
tgt_seq = torch.cat([tgt_seq, next_tokens], dim=1)
# Stack entropies and variances
entropies = torch.stack(entropies, dim=1) # (batch_size, max_length)
variances = torch.stack(variances, dim=1) # (batch_size, max_length)
return tgt_seq[:, 1:], entropies, variances # Exclude the initial <sos> token
# Objective Functions
class InfoNCE_Loss(nn.Module):
def __init__(self, temperature=0.07):
super(InfoNCE_Loss, self).__init__()
self.temperature = temperature
self.cross_entropy = nn.CrossEntropyLoss()
def forward(self, z_i, z_j):
"""
Args:
z_i (torch.Tensor): Flattened representations from view i, shape (2n, embed_dim)
z_j (torch.Tensor): Flattened representations from view j, shape (2n, embed_dim)
Returns:
torch.Tensor: InfoNCE loss
"""
n = z_i.size(0)
z = torch.cat([z_i, z_j], dim=0) # Shape: (2n, embed_dim)
z = F.normalize(z, dim=1)
similarity_matrix = torch.matmul(z, z.T) # Shape: (2n, 2n)
# Create a mask to exclude self-similarity
mask = torch.eye(2 * n, device=z.device, dtype=torch.bool)
similarity_matrix = similarity_matrix.masked_fill(mask, -1e4) # Use a manageable negative value
# Create labels for contrastive learning
labels = torch.arange(n, device=z.device)
labels = torch.cat([labels + n, labels], dim=0) # Shape: (2n,)
# Apply temperature scaling
similarity_matrix /= self.temperature
# Compute cross-entropy loss
loss = self.cross_entropy(similarity_matrix, labels)
return loss
class CovarianceRegularization(nn.Module):
def __init__(self, lambda_reg=1e-3):
super(CovarianceRegularization, self).__init__()
self.lambda_reg = lambda_reg
def forward(self, embeddings):
"""
Args:
embeddings (torch.Tensor): Embedding tensor, shape (batch_size, embed_dim)
Returns:
torch.Tensor: Covariance regularization loss
"""
batch_size, embed_dim = embeddings.size()
mean = embeddings.mean(dim=0)
embeddings_centered = embeddings - mean
cov = (embeddings_centered.T @ embeddings_centered) / (batch_size - 1)
cov_loss = torch.sum(cov ** 2) - torch.sum(torch.diag(cov) ** 2)
return self.lambda_reg * cov_loss
class DynamicsPerformanceLoss(nn.Module):
def __init__(self, lambda_var=1e-3):
super(DynamicsPerformanceLoss, self).__init__()
self.lambda_var = lambda_var
def forward(self, true_next_state, predicted_next_state):
"""
Args:
true_next_state (torch.Tensor): Ground truth next state, shape (batch_size, state_dim)
predicted_next_state (torch.Tensor): Predicted next state, shape (batch_size, state_dim)
Returns:
torch.Tensor: Dynamics performance loss
"""
mse_loss = F.mse_loss(predicted_next_state, true_next_state)
variance_loss = torch.var(predicted_next_state, dim=0).mean()
return mse_loss + self.lambda_var * variance_loss
class ThoughtConsistencyLoss(nn.Module):
def __init__(self):
super(ThoughtConsistencyLoss, self).__init__()
def forward(self, true_next_state, perturbed_next_state):
"""
Args:
true_next_state (torch.Tensor): Ground truth next state, shape (batch_size, state_dim)
perturbed_next_state (torch.Tensor): Perturbed next state, shape (batch_size, state_dim)
Returns:
torch.Tensor: Thought-consistency loss
"""
return F.mse_loss(true_next_state, perturbed_next_state)
class PolicyValueJointLoss(nn.Module):
def __init__(self, lambda_value=0.5):
super(PolicyValueJointLoss, self).__init__()
self.lambda_value = lambda_value
self.cross_entropy = nn.CrossEntropyLoss()
self.mse_loss = nn.MSELoss()
def forward(self, policy_logits, true_policy, value_pred, true_value):
"""
Args:
policy_logits (torch.Tensor): Logits from the policy network, shape (batch_size * seq_len, num_actions)
true_policy (torch.Tensor): Ground truth policy, shape (batch_size * seq_len, num_actions)
value_pred (torch.Tensor): Predicted values, shape (batch_size * seq_len)
true_value (torch.Tensor): Ground truth values, shape (batch_size * seq_len)
Returns:
torch.Tensor: Combined policy and value loss
"""
policy_logits = policy_logits.view(-1, policy_logits.size(-1))
true_policy = true_policy.view(-1, true_policy.size(-1))
value_pred = value_pred.view(-1)
true_value = true_value.view(-1)
policy_loss = self.cross_entropy(policy_logits, true_policy.argmax(dim=1))
value_loss = self.mse_loss(value_pred, true_value)
return policy_loss + self.lambda_value * value_loss
class ActionDiversityReward(nn.Module):
def __init__(self, lambda_div=1e-3):
super(ActionDiversityReward, self).__init__()
self.lambda_div = lambda_div
def forward(self, action_embeddings):
"""
Args:
action_embeddings (torch.Tensor): Embeddings of actions, shape (batch_size, embed_dim)
Returns:
torch.Tensor: Action diversity loss
"""
similarity_matrix = F.cosine_similarity(action_embeddings.unsqueeze(1), action_embeddings.unsqueeze(0), dim=2)
# Zero out self-similarity
similarity_matrix = similarity_matrix - torch.eye(similarity_matrix.size(0)).to(action_embeddings.device)
diversity_loss = torch.sum(similarity_matrix ** 2)
return self.lambda_div * diversity_loss
class ExpectedThoughtValueLoss(nn.Module):
def __init__(self):
super(ExpectedThoughtValueLoss, self).__init__()
def forward(self, mcts_best_values):
"""
Args:
mcts_best_values (torch.Tensor): Best values from MCTS, shape (batch_size)
Returns:
torch.Tensor: ETV loss
"""
return -mcts_best_values.mean()
class ExplorationRegularization(nn.Module):
def __init__(self, lambda_expl=1e-3):
super(ExplorationRegularization, self).__init__()
self.lambda_expl = lambda_expl
def forward(self, visit_counts):
"""
Args:
visit_counts (torch.Tensor): Visit counts for actions, shape (batch_size, num_actions)
Returns:
torch.Tensor: Exploration regularization loss
"""
reward = torch.sum(1.0 / (visit_counts + 1), dim=-1)
return self.lambda_expl * reward.mean()
class KL_DivergenceLoss(nn.Module):
def __init__(self):
super(KL_DivergenceLoss, self).__init__()
def forward(self, old_policy, new_policy):
"""
Args:
old_policy (torch.Tensor): Old policy probabilities, shape (batch_size, num_actions)
new_policy (torch.Tensor): New policy probabilities, shape (batch_size, num_actions)
Returns:
torch.Tensor: KL divergence loss
"""
kl_div = F.kl_div(new_policy.log(), old_policy, reduction='batchmean')
return kl_div
# MuZero
class ActionEncoder(nn.Module):
def __init__(self, vocab_size, embed_dim):
super(ActionEncoder, self).__init__()
self.embedding = nn.Embedding(vocab_size, embed_dim)
def forward(self, action_sequences):
"""
Args:
action_sequences (torch.Tensor): Tensor of shape (batch_size, seq_len)
Returns:
torch.Tensor: Encoded actions of shape (batch_size, seq_len, embed_dim)
"""
return self.embedding(action_sequences) #.half() # Convert to half-precision
class RepresentationNetwork(nn.Module):
def __init__(self, vocab_dim, d_model, state_dim):
super(RepresentationNetwork, self).__init__()
self.proj = nn.Linear(vocab_dim, d_model) # Project from vocab_dim to d_model
self.linear = nn.Linear(d_model, state_dim) # Project from d_model to state_dim
self.norm = nn.LayerNorm(state_dim)
def forward(self, transformer_output):
"""
Args:
transformer_output (torch.Tensor): Shape (batch_size, seq_len, vocab_dim)
Returns:
torch.Tensor: Encoded state of shape (batch_size, seq_len, state_dim)
"""
# First project down from vocab_dim to d_model
projected_output = self.proj(transformer_output)
# Then project down from d_model to state_dim
state = self.linear(projected_output)
state = self.norm(state)
return state
class DynamicsNetwork(nn.Module):
def __init__(self, state_dim, action_dim, hidden_dim):
super(DynamicsNetwork, self).__init__()
self.rms_norm = nn.LayerNorm(state_dim)
self.fc1 = nn.Linear(state_dim + action_dim, hidden_dim)
self.activation = nn.GELU()
self.fc2 = nn.Linear(hidden_dim, state_dim)
def forward(self, state, action):
"""
Args:
state (torch.Tensor): Current state, shape (batch_size, seq_len, state_dim)
action (torch.Tensor): Action embedding, shape (batch_size, seq_len, action_dim)
Returns:
torch.Tensor: Predicted next state, shape (batch_size, seq_len, state_dim)
"""
norm_state = self.rms_norm(state)
combined = torch.cat([norm_state, action], dim=-1)
hidden = self.activation(self.fc1(combined))
next_state = self.fc2(hidden)
return next_state
class PredictionNetwork(nn.Module):
def __init__(self, state_dim, policy_dim, value_dim):
super(PredictionNetwork, self).__init__()
self.state_dim = state_dim
self.rms_norm = nn.LayerNorm(state_dim)
self.policy_head = nn.Linear(state_dim, policy_dim)
self.value_head = nn.Linear(state_dim, value_dim)
def forward(self, state):
"""
Args:
state (torch.Tensor): Predicted state, shape (batch_size, seq_len, state_dim)
Returns:
Tuple[torch.Tensor, torch.Tensor]: Policy logits and value estimates
"""
norm_state = self.rms_norm(state)
policy_logits = self.policy_head(norm_state)
value_estimates = self.value_head(norm_state)
return policy_logits, value_estimates
class MCTSNode:
def __init__(self, state, parent=None, action=None):
"""
Initialize an MCTS node.
Args:
state (State): The current state representation.
parent (MCTSNode, optional): The parent node. Defaults to None.
action (int, optional): The action taken to reach this node. Defaults to None.
"""
self.state = state # Instance of State class
self.parent = parent # Parent MCTSNode
self.action = action # Action taken to reach this node
self.children = {} # Dict mapping actions to MCTSNode
self.visit_count = 0
self.value_sum = 0.0
self.prior = 0.0 # Prior probability from policy network
def expand(self, actions, priors):
"""
Expand the node with possible actions and their priors.
Args:
actions (list): List of possible actions (action indices).
priors (list): List of prior probabilities corresponding to actions.
"""
for action, prior in zip(actions, priors):
if action not in self.children:
child_state = self.state.apply_action(action) # Apply action to get new state
child_node = MCTSNode(state=child_state, parent=self, action=action)
child_node.prior = float(prior) # Ensure that prior is a float value
self.children[action] = child_node
def is_leaf(self):
"""
Check if the node is a leaf node (i.e., has no children).
Returns:
bool: True if leaf, False otherwise.
"""
return len(self.children) == 0
def ucb_score(self, total_visits, exploration_constant=math.sqrt(2)):
"""
Calculate the UCB (Upper Confidence Bound) score for the node.
Args:
total_visits (int): Total number of visits to the parent node.
exploration_constant (float, optional): Exploration parameter. Defaults to math.sqrt(2).
Returns:
float: The UCB score.
"""
if self.visit_count == 0:
return float('inf')
average_value = self.value_sum / self.visit_count
exploration_term = exploration_constant * self.prior * math.sqrt(total_visits) / (1 + self.visit_count)
return average_value + exploration_term
class MCTS:
def __init__(self, prediction_network, dynamics_network, action_encoder, num_iterations=10, exploration_constant=math.sqrt(2)):
"""
Initialize the MCTS.
Args:
prediction_network (nn.Module): The Prediction Network.
dynamics_network (nn.Module): The Dynamics Network.
num_iterations (int): Number of MCTS iterations per search.
exploration_constant (float): Exploration parameter for UCB.
"""
self.action_encoder = action_encoder
self.prediction_network = prediction_network
self.dynamics_network = dynamics_network
self.num_iterations = num_iterations
self.exploration_constant = exploration_constant
def search(self, root_state):
"""
Perform MCTS starting from the root_state.
Args:
root_state: The initial state from which to start MCTS.
Returns:
The best action determined by MCTS.
"""
self.root = MCTSNode(state=root_state)
for _ in range(self.num_iterations):
node = self.select(self.root)
value = self.evaluate(node)
self.backpropagate(node, value)
return self.best_action()
def select(self, node):
"""
Traverse the tree to select a node for evaluation.
Args:
node: The starting node for selection.
Returns:
The node selected for evaluation.
"""
while not node.is_leaf():
best_action, best_node = max(node.children.items(),
key=lambda item: item[1].ucb_score(node.visit_count, self.exploration_constant))
node = best_node
return node
def evaluate(self, node):
"""
Evaluate the node by expanding it and predicting its value.
Args:
node: The node to evaluate.
Returns:
The value estimate of the node.
"""
# Use the prediction network to get policy logits and value estimate
policy_logits, value_estimate = self.prediction_network(node.state.representation)
# Convert logits to probabilities
policy = F.softmax(policy_logits, dim=-1).detach().cpu().numpy()
# Expand the node with possible actions and their priors
actions = list(range(policy.shape[-1])) # Assuming actions are indexed from 0 to num_actions-1
priors = policy[0].flatten().tolist() # Convert to a 1D list of floats
node.expand(actions, priors)
return value_estimate.mean().item()
def backpropagate(self, node, value):
"""
Backpropagate the value up the tree.
Args:
node: The node to start backpropagation from.
value (float): The value to backpropagate.
"""
while node is not None:
node.visit_count += 1
node.value_sum += value
node = node.parent
def best_action(self):
"""
Choose the action with the highest visit count.
Returns:
The best action.
"""
best_child = max(self.root.children.values(), key=lambda n: n.visit_count)
return best_child.action
class State:
def __init__(self, representation, dynamics_network, action_encoder):
"""
Initialize the State.
Args:
representation (torch.Tensor): Encoded state representation, shape (batch_size, seq_len, state_dim)
dynamics_network (nn.Module): The Dynamics Network to predict next states
action_encoder (nn.Module): The Action Encoder to encode actions
"""
self.representation = representation # Shape: (batch_size, seq_len, state_dim)
self.dynamics_network = dynamics_network # Reference to Dynamics Network
self.action_encoder = action_encoder
def apply_action(self, action):
"""
Apply an action to the current state to get a new state.
Args:
action (int): The action to apply (e.g., token index)
Returns:
State: The new state after applying the action
"""
# Create action sequence filled with action index
batch_size, seq_len, _ = self.representation.size()
action_sequence = torch.full((batch_size, seq_len), action, dtype=torch.long, device=self.representation.device)
# Encode action
action_embedding = self.action_encoder(action_sequence)
# Predict the next state using the Dynamics Network
with torch.no_grad():
next_state_representation = self.dynamics_network(self.representation, action_embedding)
return State(next_state_representation, self.dynamics_network, self.action_encoder)
class PPOAgent:
def __init__(self, policy_network, optimizer, clip_epsilon=0.2, entropy_coef=0.01, value_coef=0.5):
self.policy_network = policy_network
self.optimizer = optimizer
self.clip_epsilon = clip_epsilon
self.entropy_coef = entropy_coef
self.value_coef = value_coef
def compute_loss(self, states, old_log_probs, actions, returns, advantages):
# Get policy logits and value estimates
policy_logits, value_estimates = self.policy_network(states)
batch_size, seq_len, num_actions = policy_logits.size()
# Flatten tensors
policy_logits = policy_logits.view(-1, num_actions) # Shape: (batch_size * seq_len, num_actions)
value_estimates = value_estimates.view(-1) # Shape: (batch_size * seq_len)
actions = actions.view(-1) # Shape: (batch_size * seq_len)
old_log_probs = old_log_probs.view(-1) # Shape: (batch_size * seq_len)
returns = returns.view(-1) # Shape: (batch_size * seq_len)
advantages = advantages.view(-1) # Shape: (batch_size * seq_len)
# Compute new log probabilities
new_log_probs_all = F.log_softmax(policy_logits, dim=-1) # Shape: (batch_size * seq_len, num_actions)
new_log_probs = new_log_probs_all.gather(1, actions.unsqueeze(-1)).squeeze(-1) # Shape: (batch_size * seq_len)
# Compute ratios
ratios = torch.exp(new_log_probs - old_log_probs)
# PPO surrogate loss
surr1 = ratios * advantages
surr2 = torch.clamp(ratios, 1 - self.clip_epsilon, 1 + self.clip_epsilon) * advantages
policy_loss = -torch.min(surr1, surr2).mean()
# Value loss
value_loss = F.mse_loss(value_estimates, returns)
# Entropy loss
entropy = -(new_log_probs * torch.exp(new_log_probs)).mean()
# Total loss
total_loss = policy_loss + self.value_coef * value_loss - self.entropy_coef * entropy
return total_loss
def compute_loss_world_model(predicted_next_state, true_next_state, policy_logits, true_policy, value_estimates, true_value,
alpha, beta, temperature, lambda_reg, lambda_var, lambda_div, lambda_expl):
"""
Compute the combined loss for the World Model.
Args:
predicted_next_state (torch.Tensor): Predicted next state, shape (batch_size, state_dim)
true_next_state (torch.Tensor): Ground truth next state, shape (batch_size, state_dim)
policy_logits (torch.Tensor): Policy logits, shape (batch_size, num_actions)
true_policy (torch.Tensor): Ground truth policy, shape (batch_size, num_actions)
value_estimates (torch.Tensor): Value estimates, shape (batch_size)
true_value (torch.Tensor): Ground truth value, shape (batch_size)
alpha (float): Entropy regularization weight
beta (float): Variance regularization weight
temperature (float): Temperature parameter
lambda_reg (float): Covariance regularization weight
lambda_var (float): Dynamics variance loss weight
lambda_div (float): Action diversity reward weight
lambda_expl (float): Exploration regularization weight
Returns:
torch.Tensor: Combined loss
"""
# Cross-entropy loss
ce_loss = F.cross_entropy(policy_logits, true_policy.argmax(dim=1))
# Entropy loss
probs = F.softmax(policy_logits / temperature, dim=-1) # (batch_size, num_actions)
entropy = -torch.sum(probs * torch.log(probs + 1e-9), dim=-1) # (batch_size)
entropy_loss = -alpha * torch.mean(entropy)
# Variance loss
variance = torch.var(probs, dim=-1) # (batch_size)
variance_loss = -beta * torch.mean(variance)
# Covariance Regularization
cov_reg = CovarianceRegularization(lambda_reg)(predicted_next_state)
# Dynamics Performance Loss
dynamics_loss = DynamicsPerformanceLoss(lambda_var)(true_next_state, predicted_next_state)
# Thought-Consistency Loss
perturbed_next_state = predicted_next_state + torch.randn_like(predicted_next_state) * 0.01
thought_loss = ThoughtConsistencyLoss()(true_next_state, perturbed_next_state)
# Policy-Value Joint Loss
pv_loss = PolicyValueJointLoss()(policy_logits, true_policy, value_estimates, true_value)
# Action Diversity Reward
action_embeddings = predicted_next_state # Assuming actions are derived from state
action_diversity = ActionDiversityReward(lambda_div)(action_embeddings)
# Expected Thought Value (ETV) Loss
# Placeholder: Replace with actual MCTS best values
mcts_best_values = torch.zeros(value_estimates.size(0)).to(device)
etv = ExpectedThoughtValueLoss()(mcts_best_values)
# Exploration Regularization
# Placeholder: Replace with actual visit counts
visit_counts = torch.ones(predicted_next_state.size(0), input_dim).to(device)
exploration = ExplorationRegularization(lambda_expl)(visit_counts)
# KL Divergence Regularization
# Placeholder: Replace with actual old and new policies
old_policy = F.softmax(policy_logits.detach(), dim=-1)
new_policy = F.softmax(policy_logits, dim=-1)
kl_loss = KL_DivergenceLoss()(old_policy, new_policy)
# Total Loss
total_loss = (
ce_loss +
entropy_loss +
variance_loss +
cov_reg +
dynamics_loss +
thought_loss +
pv_loss +
action_diversity +
etv +
exploration +
kl_loss
)
return total_loss
def train_epoch_world_model(world_model_components, train_loader, optimizer, scheduler, scaler, args, model_transformer, state_dim, embed_dim, input_dim):
representation_network, dynamics_network, prediction_network, action_encoder, ppo_agent = world_model_components
representation_network.train()
dynamics_network.train()
prediction_network.train()
action_encoder.train()
ppo_agent.policy_network.train()
mcts = MCTS(prediction_network, dynamics_network, action_encoder, num_iterations=args.mcts_iterations, exploration_constant=args.mcts_exploration_constant)
total_loss = 0.0
optimizer.zero_grad()
print(f"Starting World Model training epoch with {len(train_loader)} batches...")
for i, batch in enumerate(train_loader):
print(f"Processing batch {i+1}/{len(train_loader)}...")
# Ensure batches are on the appropriate device for the Transformer
src_batch = batch['input_ids'].to('cpu') # Move to CPU for Transformer model
tgt_batch = batch['labels'].to('cpu') # Move to CPU for Transformer model
with autocast(device_type='cuda'):
print("Forward pass through Transformer (frozen)...")
with torch.no_grad():
transformer_output = model_transformer(src_batch, tgt_batch[:, :-1])
# Move transformer output to the GPU for further processing
transformer_output = transformer_output.to(device)
# Encode actions directly on the GPU
encoded_actions = action_encoder(tgt_batch[:, :-1].to(device)) # Move labels to GPU for encoding
# World Model - Representation
state_representation = representation_network(transformer_output) # On GPU
batch_size, seq_len, _ = state_representation.size()
# Initialize list to collect predicted next states for the batch
predicted_next_states = []
# Iterate over each sample in the batch for MCTS
for b in range(batch_size):
# Create a State instance for the current sample
current_state = State(state_representation[b].unsqueeze(0), dynamics_network, action_encoder)
# Perform MCTS to find the best action
best_action = mcts.search(current_state)
# Create action sequence filled with best_action
action_sequence = torch.full((1, seq_len), best_action, dtype=torch.long, device=device)
# Get action embedding
action_embedding = action_encoder(action_sequence)
# Apply dynamics network
predicted_next_state = dynamics_network(current_state.representation, action_embedding)
predicted_next_states.append(predicted_next_state)
# Concatenate predicted next states to form a batch
predicted_next_state_batch = torch.cat(predicted_next_states, dim=0)
# Prediction Network - Policy logits and value
policy_logits, value_estimates = prediction_network(predicted_next_state_batch)
# Define true_policy and true_value as placeholders on the GPU
true_policy = torch.zeros_like(policy_logits).to(device)
true_value = torch.zeros_like(value_estimates).to(device)
# Compute PPO loss
actions = torch.argmax(policy_logits, dim=-1)
old_log_probs = torch.zeros_like(actions, dtype=torch.float32).to(device)
returns = torch.zeros_like(actions, dtype=torch.float32).to(device)
advantages = torch.zeros_like(actions, dtype=torch.float32).to(device)
# Compute PPO loss using states
ppo_loss = ppo_agent.compute_loss(state_representation, old_log_probs, actions, returns, advantages)
# Compute InfoNCE Loss
z_i = state_representation.view(batch_size * seq_len, state_dim) # Shape: (batch_size * seq_len, state_dim)
z_j = F.dropout(z_i, p=0.1, training=True)
info_nce = InfoNCE_Loss()(z_i, z_j)
# Compute other losses
covariance = CovarianceRegularization()(predicted_next_state_batch.view(-1, predicted_next_state_batch.size(-1)))
dynamics_loss = DynamicsPerformanceLoss()(torch.zeros_like(predicted_next_state_batch).to(device), predicted_next_state_batch)
perturbed_next_state = predicted_next_state_batch + torch.randn_like(predicted_next_state_batch) * 0.01
thought_loss = ThoughtConsistencyLoss()(torch.zeros_like(predicted_next_state_batch).to(device), perturbed_next_state)
pv_loss = PolicyValueJointLoss()(policy_logits, true_policy, value_estimates.squeeze(-1), true_value.squeeze(-1))
action_diversity = ActionDiversityReward()(encoded_actions.view(-1, embed_dim))
mcts_best_values = torch.zeros(actions.size(0)).to(device)
etv = ExpectedThoughtValueLoss()(mcts_best_values)
visit_counts = torch.ones(actions.size(0), policy_logits.size(-1)).to(device)
exploration = ExplorationRegularization()(visit_counts)
old_policy = F.softmax(policy_logits.detach(), dim=-1)
new_policy = F.softmax(policy_logits, dim=-1)
kl_loss = KL_DivergenceLoss()(old_policy, new_policy)
# Total Loss
loss = (
ppo_loss +
info_nce +
covariance +
dynamics_loss +
thought_loss +
pv_loss +
action_diversity +
etv +
exploration +
kl_loss
)
loss = loss / args.accumulation_steps
print("Backward pass...")
scaler.scale(loss).backward()
if (i + 1) % args.accumulation_steps == 0:
print("Gradient clipping...")
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(
[param for group in optimizer.param_groups for param in group['params']],
args.max_grad_norm
)
print("Optimizer step...")
scaler.step(optimizer)
scaler.update()
print("Zeroing gradients...")
optimizer.zero_grad()
print("Updating learning rate...")
scheduler.step()
total_loss += loss.item() * args.accumulation_steps
print(f"Batch {i+1} completed. Current loss: {loss.item():.4f}")
avg_loss = total_loss / len(train_loader)
print(f"World Model training epoch completed. Average loss: {avg_loss:.4f}")
return avg_loss
def evaluate_world_model(world_model_components, model_transformer, eval_loader, args):
representation_network, dynamics_network, prediction_network, action_encoder, ppo_agent = world_model_components
representation_network.eval()
dynamics_network.eval()
prediction_network.eval()
action_encoder.eval()
ppo_agent.policy_network.eval()
total_loss = 0.0
with torch.no_grad():
for batch in eval_loader:
src_batch = batch['input_ids'].to(device)
tgt_batch = batch['labels'].to(device)
# Forward pass through Transformer (on CPU)
transformer_output = model_transformer(src_batch, tgt_batch[:, :-1])
# Encode actions
encoded_actions = action_encoder(tgt_batch[:, :-1].to(device)) # Move to GPU if necessary
# World Model - Representation
state = representation_network(transformer_output.to(device))
# Dynamics Network - Predict next state
predicted_next_state = dynamics_network(state, encoded_actions)
# Prediction Network - Policy logits and value
policy_logits, value_estimates = prediction_network(predicted_next_state)
# Placeholder: Define true_policy and true_value
# Replace these with actual targets from your environment or dataset
true_policy = torch.zeros_like(policy_logits).to(device)
true_value = torch.zeros_like(value_estimates).to(device)
# Compute PPO loss
# Placeholder: Replace with actual old_log_probs, actions, returns, and advantages
old_log_probs = torch.zeros_like(policy_logits).to(device)
actions = torch.argmax(policy_logits, dim=-1)
returns = torch.zeros(actions.size(0)).to(device)
advantages = torch.zeros(actions.size(0)).to(device)
ppo_loss = ppo_agent.compute_loss(old_log_probs, actions, returns, advantages)
# Compute other losses
info_nce = InfoNCE_Loss()(state, state) # Placeholder: replace with actual positive pairs
covariance = CovarianceRegularization()(predicted_next_state.view(-1, predicted_next_state.size(-1)))
dynamics_loss = DynamicsPerformanceLoss()(torch.zeros_like(predicted_next_state).to(device), predicted_next_state)
perturbed_next_state = predicted_next_state + torch.randn_like(predicted_next_state) * 0.01
thought_loss = ThoughtConsistencyLoss()(torch.zeros_like(predicted_next_state).to(device), perturbed_next_state)
pv_loss = PolicyValueJointLoss()(policy_logits, true_policy, value_estimates.squeeze(-1), true_value.squeeze(-1))
action_diversity = ActionDiversityReward()(encoded_actions.view(-1, encoded_actions.size(-1)))
mcts_best_values = torch.zeros(actions.size(0)).to(device) # Placeholder: replace with actual MCTS values
etv = ExpectedThoughtValueLoss()(mcts_best_values)
visit_counts = torch.ones(actions.size(0), policy_logits.size(-1)).to(device) # Placeholder: replace with actual visit counts
exploration = ExplorationRegularization()(visit_counts)
old_policy = F.softmax(policy_logits.detach(), dim=-1)
new_policy = F.softmax(policy_logits, dim=-1)
kl_loss = KL_DivergenceLoss()(old_policy, new_policy)
# Total Loss
loss = (
ppo_loss +
info_nce +
covariance +
dynamics_loss +
thought_loss +
pv_loss +
action_diversity +
etv +
exploration +
kl_loss
)
total_loss += loss.item()
avg_loss = total_loss / len(eval_loader)
print(f"World Model evaluation completed. Average loss: {avg_loss:.4f}")
return avg_loss
def main():
args = parse_args()
print("Arguments parsed successfully.")
# Create save directory
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
print(f"Save directory created: {args.save_dir}")
# Load tokenizer
print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(args.model_name)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
print("Tokenizer loaded successfully.")
# Define padding_idx and input dimension based on tokenizer
padding_idx = tokenizer.pad_token_id
input_dim = len(tokenizer)
# Load data
print("Loading and preprocessing data...")
train_loader, eval_loader = load_data(args, tokenizer)
print("Data loaded and preprocessed successfully.")
# Define model parameters
d_model = 512 # half to save space
num_heads = 8
num_layers = 6
d_ff = 2048
num_experts = 4
output_dim = input_dim
dropout = 0.1
top_k = 2
state_dim = 128
action_dim = d_model
hidden_dim = 512
vocab_dim = len(tokenizer)
# Initialize and load the Transformer model (on CPU)
print("Initializing and loading Transformer model...")
model_transformer = Transformer(input_dim, d_model, num_heads, num_layers, d_ff, num_experts, output_dim, dropout, top_k)
model_transformer.load_state_dict(torch.load(args.transformer_model_path, map_location='cpu'))
model_transformer.eval()
model_transformer.to('cpu')
print("Transformer model loaded and moved to CPU.")
# Define World Model components
representation_network = RepresentationNetwork(vocab_dim, d_model, state_dim).to(device)
dynamics_network = DynamicsNetwork(state_dim, action_dim, hidden_dim).to(device)
prediction_network = PredictionNetwork(state_dim, input_dim, 1).to(device)
action_encoder = ActionEncoder(input_dim, action_dim).to(device)
# Define Optimizers and Schedulers
optimizer = optim.AdamW(
list(representation_network.parameters()) +
list(dynamics_network.parameters()) +
list(prediction_network.parameters()) +
list(action_encoder.parameters()),
lr=args.learning_rate, weight_decay=args.weight_decay
)
scheduler = CosineAnnealingLR(optimizer, T_max=args.num_epochs)
scaler = GradScaler()
# Initialize PPO Agent
ppo_agent = PPOAgent(
policy_network=prediction_network,
optimizer=optim.AdamW(prediction_network.parameters(), lr=args.learning_rate),
clip_epsilon=0.2,
entropy_coef=0.01,
value_coef=0.5
)
# Bundle World Model components
world_model_components = (representation_network, dynamics_network, prediction_network, action_encoder, ppo_agent)
print("Setup complete. Starting training...")
for epoch in range(args.num_epochs):
print(f"Epoch {epoch + 1}/{args.num_epochs} started.")
# Train World Model
avg_train_loss = train_epoch_world_model(
world_model_components,
train_loader,
optimizer,
scheduler,
scaler,
args,
model_transformer,
state_dim,
d_model, # this is the embedding dimension
input_dim
)
print(f"World Model training epoch {epoch + 1} completed. Average loss: {avg_train_loss:.4f}")
# Evaluate World Model
avg_eval_loss = evaluate_world_model(
world_model_components,
model_transformer,
eval_loader,
args
)
print(f"Evaluation for epoch {epoch + 1} completed. Average loss: {avg_eval_loss:.4f}")
print(f"Epoch {epoch + 1}/{args.num_epochs}, Train Loss: {avg_train_loss:.4f}, Eval Loss: {avg_eval_loss:.4f}")
# Save Models
save_all_models(model_transformer, representation_network, dynamics_network, prediction_network, action_encoder, args.save_dir, epoch + 1)
print(f"Models saved for epoch {epoch + 1}")
print("Training completed.")
if __name__ == '__main__':
main()
|