File size: 44,955 Bytes
e1392d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 |
# agent.py
# agent.py
import numpy as np
from mcts import MCTS
from ranking import train_ranking_model
from bs4 import BeautifulSoup
import torch
import torch.nn as nn
import torch.optim as optim
from collections import deque, OrderedDict
import random
from sklearn.metrics.pairwise import cosine_similarity
from transformers import GPT2LMHeadModel, GPT2Tokenizer
from sentence_transformers import SentenceTransformer
import hashlib
from twisted.internet import defer
import logging
import json
import os
from urllib.parse import urlparse
logger = logging.getLogger(__name__)
# ==========================
# Prioritized Experience Replay
# ==========================
class SumTree:
"""
SumTree data structure where the parent’s value is the sum of its children.
Leaf nodes contain the priorities of experiences.
"""
def __init__(self, capacity):
self.capacity = capacity
self.tree = np.zeros(2 * capacity - 1)
self.data = np.zeros(capacity, dtype=object)
self.write = 0
self.n_entries = 0
def _propagate(self, idx, change):
parent = (idx - 1) // 2
self.tree[parent] += change
if parent != 0:
self._propagate(parent, change)
def _retrieve(self, idx, s):
left = 2 * idx + 1
right = left + 1
if left >= len(self.tree):
return idx
if s <= self.tree[left]:
return self._retrieve(left, s)
else:
return self._retrieve(right, s - self.tree[left])
def total(self):
return self.tree[0]
def add(self, p, data):
idx = self.write + self.capacity - 1
self.data[self.write] = data
self.update(idx, p)
self.write += 1
if self.write >= self.capacity:
self.write = 0
if self.n_entries < self.capacity:
self.n_entries += 1
def update(self, idx, p):
change = p - self.tree[idx]
self.tree[idx] = p
self._propagate(idx, change)
def get(self, s):
idx = self._retrieve(0, s)
data_idx = idx - self.capacity + 1
return (idx, self.tree[idx], self.data[data_idx])
class PrioritizedReplayMemory:
def __init__(self, capacity, alpha=0.6):
self.tree = SumTree(capacity)
self.alpha = alpha # [0,1] convert the importance of TD error to priority
self.epsilon = 1e-6 # small amount to avoid zero priority
def add(self, error, sample):
p = (np.abs(error) + self.epsilon) ** self.alpha
self.tree.add(p, sample)
def sample(self, batch_size, beta=0.4):
batch = []
idxs = []
segment = self.tree.total() / batch_size
priorities = []
for i in range(batch_size):
a = segment * i
b = segment * (i + 1)
s = random.uniform(a, b)
idx, p, data = self.tree.get(s)
batch.append(data)
idxs.append(idx)
priorities.append(p)
total = self.tree.total()
probs = priorities / total
weights = (self.tree.n_entries * probs) ** (-beta)
weights /= weights.max()
return batch, idxs, weights
def update(self, idx, error):
p = (np.abs(error) + self.epsilon) ** self.alpha
self.tree.update(idx, p)
# ==========================
# Hierarchical Reinforcement Learning (HRL)
# ==========================
class ManagerModel(nn.Module):
"""
High-level policy model (Manager) that decides which option to execute.
"""
def __init__(self, input_size, hidden_size, num_options):
super(ManagerModel, self).__init__()
self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)
self.fc = nn.Linear(hidden_size, num_options)
self.layer_norm = nn.LayerNorm(hidden_size)
def forward(self, x, hidden=None):
if x.dim() == 2:
x = x.unsqueeze(1) # Add a time dimension
out, hidden = self.lstm(x, hidden)
last_output = out[:, -1, :]
last_output = self.layer_norm(last_output)
option_scores = self.fc(last_output)
return option_scores, hidden
class WorkerModel(nn.Module):
"""
Low-level policy model (Worker) that executes actions based on the selected option.
"""
def __init__(self, input_size, hidden_size, action_size):
super(WorkerModel, self).__init__()
self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)
self.fc = nn.Linear(hidden_size, action_size)
self.layer_norm = nn.LayerNorm(hidden_size)
self.action_size = action_size # Store action_size for reference
def forward(self, x, hidden=None):
if x.dim() == 2:
x = x.unsqueeze(1) # Add a time dimension
out, hidden = self.lstm(x, hidden)
last_output = out[:, -1, :]
last_output = self.layer_norm(last_output)
action_scores = self.fc(last_output)
return action_scores, hidden
def act(self, state, epsilon=0.1):
"""
Selects an action using epsilon-greedy policy.
"""
if random.random() < epsilon:
action = random.randint(0, self.action_size - 1)
return action
state = torch.FloatTensor(state).unsqueeze(0).to(next(self.parameters()).device)
with torch.no_grad():
action_scores, _ = self(state)
action = torch.argmax(action_scores, dim=1).item()
return action
# ==========================
# RAGSummarizer Class
# ==========================
class RAGSummarizer:
def __init__(self, model_name='gpt2', embedding_model='all-MiniLM-L6-v2',
max_length=150, cache_capacity=100, persistent_cache_path='rag_cache.json'):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.tokenizer = GPT2Tokenizer.from_pretrained(model_name)
self.model = GPT2LMHeadModel.from_pretrained(model_name).to(self.device)
# Explicitly set the device for SentenceTransformer
self.embedding_model = SentenceTransformer(embedding_model, device=self.device)
self.max_length = max_length
self.cache = LRUCache(cache_capacity)
self.persistent_cache_path = persistent_cache_path
self.load_persistent_cache()
def load_persistent_cache(self):
if os.path.exists(self.persistent_cache_path):
with open(self.persistent_cache_path, 'r', encoding='utf-8') as f:
try:
persistent_data = json.load(f)
for key, value in persistent_data.items():
self.cache.put(key, value)
logger.info(f"Loaded persistent cache with {len(persistent_data)} entries.")
except json.JSONDecodeError:
logger.warning("Persistent cache file is corrupted. Initializing empty cache.")
else:
logger.info("No persistent cache found. Starting with empty cache.")
def save_persistent_cache(self):
with open(self.persistent_cache_path, 'w', encoding='utf-8') as f:
json.dump(self.cache.cache, f, indent=2)
logger.info(f"Saved persistent cache with {len(self.cache.cache)} entries.")
def save_rag_data(self, query, chunks, embeddings):
data = {
"query": query,
"chunks": chunks,
"embeddings": embeddings.tolist()
}
os.makedirs("rag_data", exist_ok=True)
filename = f"rag_data/{hash(query)}.json"
with open(filename, 'w') as f:
json.dump(data, f, indent=2)
logger.info(f"Saved RAG data to {filename}")
def split_into_chunks(self, text, chunk_size=200):
words = text.split()
return [' '.join(words[i:i+chunk_size]) for i in range(0, len(words), chunk_size)]
def retrieve_relevant_chunks(self, query, chunks, embeddings, top_k=3):
if embeddings.size(0) == 0:
logger.warning("Embeddings are empty. Cannot retrieve relevant chunks.")
return []
query_embedding = self.embedding_model.encode([query], convert_to_tensor=True)
cosine_scores = cosine_similarity(query_embedding.cpu().numpy(), embeddings.cpu().numpy())[0]
top_indices = cosine_scores.argsort()[-top_k:][::-1]
# Ensure indices are within bounds
top_indices = [idx for idx in top_indices if idx < len(chunks)]
return [chunks[i] for i in top_indices]
def get_embeddings(self, chunks):
# Implement batch processing
batch_size = 32
embeddings = []
for i in range(0, len(chunks), batch_size):
batch = chunks[i:i+batch_size]
batch_embeddings = self.embedding_model.encode(batch, convert_to_tensor=True)
embeddings.append(batch_embeddings)
if embeddings:
return torch.cat(embeddings, dim=0)
else:
return torch.tensor([])
def generate_summary(self, query, relevant_chunks):
cache_key = hashlib.md5((query + ''.join(relevant_chunks)).encode()).hexdigest()
cached_summary = self.cache.get(cache_key)
if cached_summary:
return cached_summary
context = " ".join(relevant_chunks)
prompt = f"Summarize the following content in relation to '{query}': {context}\n\nSummary:"
input_ids = self.tokenizer.encode(prompt, return_tensors='pt').to(self.device)
try:
output = self.model.generate(
input_ids,
max_length=input_ids.shape[1] + self.max_length,
num_return_sequences=1,
no_repeat_ngram_size=2,
top_k=50,
top_p=0.95,
temperature=0.7,
early_stopping=True
)
except Exception as e:
logger.error(f"Error during summary generation: {str(e)}")
return "Summary generation failed."
self.save_rag_data(query, relevant_chunks, self.get_embeddings(relevant_chunks))
summary = self.tokenizer.decode(output[0], skip_special_tokens=True)
summary = summary.split("Summary:")[-1].strip()
self.cache.put(cache_key, summary)
self.save_persistent_cache()
return summary
# ==========================
# WorldModel Class
# ==========================
class WorldModel(nn.Module):
def __init__(self, input_size, hidden_size, output_size, num_layers=2, dropout=0.3):
super(WorldModel, self).__init__()
self.lstm = nn.LSTM(input_size, hidden_size, num_layers=num_layers,
batch_first=True, dropout=dropout)
self.fc = nn.Linear(hidden_size, output_size)
self.value_head = nn.Linear(hidden_size, 1)
self.layer_norm = nn.LayerNorm(hidden_size)
def forward(self, x, hidden=None):
if x.dim() == 2:
x = x.unsqueeze(1) # Add a time dimension
out, hidden = self.lstm(x, hidden)
last_output = out[:, -1, :]
last_output = self.layer_norm(last_output)
action_scores = self.fc(last_output)
state_value = self.value_head(last_output)
return action_scores, state_value, hidden
# ==========================
# Manager and Worker Classes for HRL
# ==========================
class Manager:
def __init__(self, state_size, num_options, hidden_size=128, learning_rate=0.001, gamma=0.99,
epsilon=1.0, epsilon_decay=0.995, epsilon_min=0.01, memory_capacity=1000, device=torch.device("cpu")):
self.state_size = state_size
self.num_options = num_options
self.gamma = gamma
self.epsilon = epsilon
self.epsilon_decay = epsilon_decay
self.epsilon_min = epsilon_min
self.device = device
self.model = ManagerModel(state_size, hidden_size, num_options).to(self.device)
self.target_model = ManagerModel(state_size, hidden_size, num_options).to(self.device)
self.optimizer = optim.AdamW(self.model.parameters(), lr=learning_rate, weight_decay=1e-5)
self.loss_fn = nn.MSELoss()
self.scheduler = optim.lr_scheduler.ReduceLROnPlateau(self.optimizer, 'min', patience=5, factor=0.5, verbose=True)
self.memory = PrioritizedReplayMemory(capacity=memory_capacity, alpha=0.6)
self.update_target_model()
def update_target_model(self):
self.target_model.load_state_dict(self.model.state_dict())
def remember(self, state, option, reward, next_state, done, td_error):
sample = (state, option, reward, next_state, done)
self.memory.add(td_error, sample)
def act(self, state):
if random.random() < self.epsilon:
option = random.randint(0, self.num_options - 1)
return option
state = torch.FloatTensor(state).unsqueeze(0).to(self.model.lstm.weight.device)
with torch.no_grad():
option_scores, _ = self.model(state)
option = torch.argmax(option_scores).item()
return option
def replay(self, batch_size, beta=0.4):
if self.memory.tree.n_entries < batch_size:
return
batch, idxs, weights = self.memory.sample(batch_size, beta)
states, options, rewards, next_states, dones = zip(*batch)
states = torch.FloatTensor(states).to(self.model.lstm.weight.device)
next_states = torch.FloatTensor(next_states).to(self.model.lstm.weight.device)
options = torch.LongTensor(options).unsqueeze(1).to(self.model.lstm.weight.device)
rewards = torch.FloatTensor(rewards).unsqueeze(1).to(self.model.lstm.weight.device)
dones = torch.FloatTensor(dones).unsqueeze(1).to(self.model.lstm.weight.device)
weights = torch.FloatTensor(weights).unsqueeze(1).to(self.model.lstm.weight.device)
# Current Q values
current_q_values, _ = self.model(states)
current_q_values = current_q_values.gather(1, options)
# Target Q values
with torch.no_grad():
next_q_values, _ = self.target_model(next_states)
max_next_q_values = next_q_values.max(1)[0].unsqueeze(1)
target_q_values = rewards + (self.gamma * max_next_q_values * (1 - dones))
# Compute TD errors
td_errors = target_q_values - current_q_values
# Compute loss with importance-sampling weights
loss = (td_errors.pow(2) * weights).mean()
# Optimize the model
self.optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=1.0)
self.optimizer.step()
self.scheduler.step(loss.item())
# Update priorities
td_errors_np = td_errors.detach().cpu().numpy().squeeze()
for idx, td_error in zip(idxs, td_errors_np):
self.memory.update(idx, np.abs(td_error))
# Decay epsilon
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
# ==========================
# AutonomousWebAgent Class
# ==========================
def truncate_text(text, max_length=1024):
tokens = text.split()
if len(tokens) > max_length:
return ' '.join(tokens[:max_length])
return text
class AutonomousWebAgent:
def __init__(self, state_size, action_size, num_options, hidden_size=64, learning_rate=0.001,
gamma=0.99, epsilon=1.0, epsilon_decay=0.995, epsilon_min=0.01,
knowledge_base_path='knowledge_base.json'):
self.state_size = state_size
self.action_size = action_size
self.num_options = num_options # Number of high-level options for HRL
self.gamma = gamma
self.epsilon = epsilon
self.epsilon_decay = epsilon_decay
self.epsilon_min = epsilon_min
# Initialize RAGSummarizer first to get the device
self.summarizer = RAGSummarizer()
self.device = self.summarizer.device
# Initialize SentenceTransformer with the correct device
self.embedding_model = SentenceTransformer('all-MiniLM-L6-v2', device=self.device)
# Low-level (Worker) Model
self.worker_model = WorldModel(state_size, hidden_size, action_size).to(self.device)
self.worker_target_model = WorldModel(state_size, hidden_size, action_size).to(self.device)
self.worker_optimizer = optim.AdamW(self.worker_model.parameters(), lr=learning_rate, weight_decay=1e-5)
self.worker_loss_fn = nn.MSELoss()
self.worker_scheduler = optim.lr_scheduler.ReduceLROnPlateau(self.worker_optimizer, 'min', patience=5, factor=0.5, verbose=True)
self.worker_memory = PrioritizedReplayMemory(capacity=2000, alpha=0.6)
self.update_worker_target_model()
# High-level (Manager) Model
self.manager = Manager(state_size, num_options, hidden_size=128, learning_rate=learning_rate,
gamma=gamma, epsilon=epsilon, epsilon_decay=epsilon_decay,
epsilon_min=epsilon_min, memory_capacity=1000, device=self.device)
self.mcts = MCTS(initial_state="")
logger.info(f"Initialized AutonomousWebAgent with state_size={state_size}, action_size={action_size}, num_options={num_options}")
self.site_performance = {} # {(site, query): performance_score}
# List of all search sites (base URLs without the query)
self.all_search_sites = [
"https://en.wikibooks.org/w/index.php?search=",
"https://en.wikiversity.org/w/index.php?search=",
"https://commons.wikimedia.org/w/index.php?search=",
"https://stackexchange.com/search?q=",
"https://arxiv.org/search/?query=",
"https://www.ncbi.nlm.nih.gov/pmc/?term=",
"https://www.gutenberg.org/ebooks/search/?query=",
"https://openlibrary.org/search?q=",
"https://doaj.org/search/articles?ref=homepage&q=",
"https://www.ted.com/search?q=",
"https://en.citizendium.org/wiki?search=",
"https://www.jstor.org/action/doBasicSearch?Query=",
"https://archive.org/search.php?query=",
"https://search.scielo.org/?q=",
"https://paperswithcode.com/search?q=",
"https://www.reddit.com/search/?q=",
"https://huggingface.co./models?search=",
"https://huggingface.co./datasets?search=",
"https://machinelearningmastery.com/?s=",
"https://www.kaggle.com/search?q=",
"https://towardsdatascience.com/search?q=",
"https://github.com/search?q=",
"https://stackoverflow.com/search?q=",
"https://www.youtube.com/results?search_query=",
"https://www.slideshare.net/search/slideshow?searchfrom=header&q="
]
# Initialize Knowledge Base
self.knowledge_base_path = knowledge_base_path
self.knowledge_base = []
self.kb_embeddings = None
self.load_knowledge_base()
# Additional Features for State Representation
self.additional_features = ['image_count', 'script_count', 'css_count']
def save(self, filename):
"""Save the entire agent state."""
state = {
'worker_model': self.worker_model.state_dict(),
'manager_model': self.manager.model.state_dict(),
'worker_optimizer': self.worker_optimizer.state_dict(),
'manager_optimizer': self.manager.optimizer.state_dict(),
'epsilon': self.epsilon
}
torch.save(state, filename)
logger.info(f"Saved agent state to {filename}")
def load(self, filename):
"""Load the entire agent state."""
state = torch.load(filename, map_location=self.device)
self.worker_model.load_state_dict(state['worker_model'])
self.manager.model.load_state_dict(state['manager_model'])
self.worker_optimizer.load_state_dict(state['worker_optimizer'])
self.manager.optimizer.load_state_dict(state['manager_optimizer'])
self.epsilon = state['epsilon']
logger.info(f"Loaded agent state from {filename}")
# ==========================
# Text Generation
# ==========================
def generate_text(self, prompt):
# Use the RAGSummarizer to generate text
chunks = self.summarizer.split_into_chunks(prompt)
embeddings = self.summarizer.get_embeddings(chunks)
relevant_chunks = self.summarizer.retrieve_relevant_chunks(query=prompt, chunks=chunks, embeddings=embeddings)
generated_text = self.summarizer.generate_summary(prompt, relevant_chunks)
return generated_text
# ==========================
# Knowledge Base Management
# ==========================
def load_knowledge_base(self):
if not os.path.exists(self.knowledge_base_path):
logger.warning(f"Knowledge base file {self.knowledge_base_path} does not exist. Initializing empty KB.")
self.knowledge_base = []
self.kb_embeddings = torch.tensor([]).to(self.device)
return
with open(self.knowledge_base_path, 'r', encoding='utf-8') as f:
self.knowledge_base = json.load(f)
if self.knowledge_base:
texts = [doc['content'] for doc in self.knowledge_base]
self.kb_embeddings = self.embedding_model.encode(texts, convert_to_tensor=True)
logger.info(f"Loaded {len(self.knowledge_base)} documents into the knowledge base.")
else:
self.kb_embeddings = torch.tensor([]).to(self.device)
logger.info("Knowledge base is empty.")
def save_knowledge_base(self):
with open(self.knowledge_base_path, 'w', encoding='utf-8') as f:
json.dump(self.knowledge_base, f, indent=2)
logger.info(f"Knowledge base saved with {len(self.knowledge_base)} documents.")
def add_document_to_kb(self, title, content, metadata=None):
document = {
"title": title,
"content": content,
"metadata": metadata or {}
}
self.knowledge_base.append(document)
# Update embeddings
new_embedding = self.embedding_model.encode([content], convert_to_tensor=True).to(self.device)
if self.kb_embeddings.numel() == 0:
self.kb_embeddings = new_embedding
else:
self.kb_embeddings = torch.cat([self.kb_embeddings, new_embedding], dim=0)
# Save to knowledge base
self.save_knowledge_base()
logger.info(f"Added new document to knowledge base: {title}")
def retrieve_from_kb(self, query, top_k=5):
if not self.knowledge_base:
logger.warning("Knowledge base is empty. No documents to retrieve.")
return []
query_embedding = self.embedding_model.encode([query], convert_to_tensor=True).to(self.device)
if self.kb_embeddings is None or self.kb_embeddings.numel() == 0:
logger.warning("Knowledge base embeddings are empty. No documents to retrieve.")
return []
if query_embedding.size(1) != self.kb_embeddings.size(1):
logger.error("Dimension mismatch between query embedding and KB embeddings.")
return []
cosine_scores = cosine_similarity(query_embedding.cpu().numpy(), self.kb_embeddings.cpu().numpy())[0]
top_indices = cosine_scores.argsort()[-top_k:][::-1]
# Ensure indices are within the knowledge_base length
top_indices = [idx for idx in top_indices if idx < len(self.knowledge_base)]
retrieved_docs = []
for idx in top_indices:
doc = self.knowledge_base[idx]
doc['score'] = cosine_scores[idx]
retrieved_docs.append(doc)
logger.info(f"Retrieved top {len(retrieved_docs)} documents from Knowledge Base for the query.")
return retrieved_docs
# ==========================
# RAG Integration
# ==========================
def retrieve_from_web(self, query, top_k=5):
logger.info(f"Performing web search for query: {query}")
mcts_iterations = self.calculate_mcts_iterations(np.zeros(self.state_size, dtype=np.float32))
self.mcts = MCTS(initial_state=query, num_simulations=mcts_iterations)
try:
new_query = yield self.mcts.run()
logger.debug(f"New query from MCTS: {new_query}")
# Select search sites
search_sites = self.select_search_sites(new_query)
results = yield self.mcts.web_search(new_query, search_sites)
logger.debug(f"Web search completed. Found {len(results)} results")
return results[:top_k] if results else []
except Exception as e:
logger.error(f"Error during MCTS or web search: {str(e)}", exc_info=True)
return []
def combine_documents(self, kb_docs, web_docs):
combined = kb_docs + web_docs
logger.info(f"Combined {len(kb_docs)} KB documents and {len(web_docs)} Web documents.")
return combined
def save_llm_training_data(self, query, content, summary=None, link=None, title=None):
data = {
"query": query,
"search_result": {
"link": link,
"title": title
},
"content": content,
"description": summary
}
os.makedirs("llm_training_data", exist_ok=True)
file_path = "llm_training_data/llm_training_data.jsonl"
# Append the new data as a new line in the JSONL file
with open(file_path, 'a', encoding='utf-8') as f:
json.dump(data, f)
f.write('\n')
logger.info(f"Appended LLM training data to {file_path}")
# ==========================
# Hierarchical RL Integration
# ==========================
def remember_manager(self, state, option, reward, next_state, done, td_error):
self.manager.remember(state, option, reward, next_state, done, td_error)
def remember_worker(self, state, action, reward, next_state, done):
self.worker_memory.add(reward, (state, action, reward, next_state, done))
# ==========================
# Action Selection and Execution
# ==========================
def act_manager(self, state):
option = self.manager.act(state)
return option
def act_worker(self, state):
action = self.worker_model.act(state, epsilon=self.epsilon)
return action
# ==========================
# Replay Methods
# ==========================
def replay_manager(self, batch_size=32, beta=0.4):
self.manager.replay(batch_size, beta)
def replay_worker(self, batch_size=32, beta=0.4):
result = self.worker_memory.replay(batch_size, beta)
if result is None:
return
batch, idxs, weights = result
if len(self.worker_memory.tree.data) >= batch_size:
batch, idxs, weights = self.worker_memory.sample(batch_size, beta)
states, actions, rewards, next_states, dones = zip(*batch)
states = torch.FloatTensor(states).to(self.worker_model.lstm.weight.device)
next_states = torch.FloatTensor(next_states).to(self.worker_model.lstm.weight.device)
actions = torch.LongTensor(actions).unsqueeze(1).to(self.worker_model.lstm.weight.device)
rewards = torch.FloatTensor(rewards).unsqueeze(1).to(self.worker_model.lstm.weight.device)
dones = torch.FloatTensor(dones).unsqueeze(1).to(self.worker_model.lstm.weight.device)
weights = torch.FloatTensor(weights).unsqueeze(1).to(self.worker_model.lstm.weight.device)
# Current Q values
current_q_values, _ = self.worker_model(states)
current_q_values = current_q_values.gather(1, actions)
# Target Q values
with torch.no_grad():
next_q_values, _ = self.worker_target_model(next_states)
max_next_q_values = next_q_values.max(1)[0].unsqueeze(1)
target_q_values = rewards + (self.gamma * max_next_q_values * (1 - dones))
# Compute TD errors
td_errors = target_q_values - current_q_values
# Compute loss with importance-sampling weights
loss = (td_errors.pow(2) * weights).mean()
# Optimize the model
self.worker_optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(self.worker_model.parameters(), max_norm=1.0)
self.worker_optimizer.step()
self.worker_scheduler.step(loss.item())
# Update priorities
td_errors_np = td_errors.detach().cpu().numpy().squeeze()
for idx, td_error in zip(idxs, td_errors_np):
self.worker_memory.update(idx, np.abs(td_error))
# Decay epsilon
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
logger.debug(f"Updated epsilon to: {self.epsilon}")
# ==========================
# Load and Save Models
# ==========================
def load_worker_model(self, name):
self.worker_model.load_state_dict(torch.load(name, map_location=self.device))
logger.info(f"Loaded worker model weights from {name}")
def save_worker_model(self, name):
torch.save(self.worker_model.state_dict(), name)
logger.info(f"Saved worker model weights to {name}")
def load_manager_model(self, name):
self.manager.model.load_state_dict(torch.load(name, map_location=self.device))
self.manager.update_target_model()
logger.info(f"Loaded manager model weights from {name}")
def save_manager_model(self, name):
torch.save(self.manager.model.state_dict(), name)
logger.info(f"Saved manager model weights to {name}")
# ==========================
# Update Target Models
# ==========================
def update_worker_target_model(self):
self.worker_target_model.load_state_dict(self.worker_model.state_dict())
logger.info("Updated worker target model with current model weights")
def update_manager_target_model(self):
self.manager.update_target_model()
logger.info("Updated manager target model with current model weights")
# ==========================
# Feature Extraction
# ==========================
def extract_features(self, content, query):
content = truncate_text(content)
query = truncate_text(query)
soup = BeautifulSoup(content, 'html.parser')
text = soup.get_text()
word_count = len(text.split())
link_count = len(soup.find_all('a'))
header_count = len(soup.find_all(['h1', 'h2', 'h3', 'h4', 'h5', 'h6']))
# Calculate semantic similarity
text_embedding = self.embedding_model.encode([text], convert_to_tensor=True).to(self.device)
query_embedding = self.embedding_model.encode([query], convert_to_tensor=True).to(self.device)
semantic_similarity = cosine_similarity(text_embedding.cpu().numpy(), query_embedding.cpu().numpy())[0][0]
# Additional Features
image_count = len(soup.find_all('img'))
script_count = len(soup.find_all('script'))
css_count = len(soup.find_all('link', rel='stylesheet'))
return np.array([word_count, link_count, header_count, semantic_similarity, image_count, script_count, css_count])
# ==========================
# Reward Calculation
# ==========================
def calculate_reward(self, content, query):
try:
ranked_results = train_ranking_model(query, [{'content': content}])
logger.debug(f"Ranked results: {ranked_results}")
if ranked_results and isinstance(ranked_results[0], dict) and 'predicted_score' in ranked_results[0]:
reward = max(ranked_results[0]['predicted_score'], 0)
logger.debug(f"Calculated reward: {reward}")
return reward
else:
logger.warning(f"Invalid ranked results: {ranked_results}")
return 0
except Exception as e:
logger.error(f"Error in calculate_reward: {str(e)}", exc_info=True)
return 0
# ==========================
# Search Site Selection
# ==========================
def select_search_sites(self, query, num_sites=5):
# Select top sites based on past performance for this query
site_scores = {}
for (site, q), score in self.site_performance.items():
if q == query:
site_scores[site] = site_scores.get(site, 0) + score
if site_scores:
sorted_sites = sorted(site_scores.items(), key=lambda x: x[1], reverse=True)
top_sites = [site for site, score in sorted_sites[:num_sites]]
else:
# If no past data, select random sites
top_sites = random.sample(self.all_search_sites, num_sites)
# Construct full URLs with query
search_sites = [site + query for site in top_sites]
return search_sites
# ==========================
# Search Method with HRL
# ==========================
@defer.inlineCallbacks
def search(self, query, max_steps=2):
logger.info(f"Starting search for query: {query}")
state = np.zeros(self.state_size, dtype=np.float32)
total_reward = 0
content = ""
done = False
results = None
try:
# High-Level: Manager selects an option
option = self.act_manager(state)
logger.debug(f"Manager selected option: {option}")
# Execute the selected option
if option == 0: # Search Option
logger.debug("Executing Search Option")
results = yield self.retrieve_from_web(query)
if results:
content = results[0]['content']
site = urlparse(results[0]['link']).netloc
self.save_llm_training_data(
query,
content,
summary=results[0].get('summary'),
link=results[0].get('link'),
title=results[0].get('title')
)
self.add_document_to_kb(title=results[0].get('title', 'No Title'), content=content, metadata=results[0].get('meta', {}))
next_state = self.extract_features(content, query)
reward = self.calculate_reward(content, query)
logger.debug(f"Extracted features: {next_state}, Reward: {reward}")
# Update site performance
key = (site, query)
self.site_performance[key] = self.site_performance.get(key, 0) + reward
# Remember Manager's experience
self.remember_manager(state, option, reward, next_state, done, td_error=reward)
# Remember Worker's experience
self.remember_worker(state, 0, reward, next_state, done)
state = next_state.astype(np.float32)
total_reward += reward
else:
reward = -1
logger.warning(f"No results for query: {query}")
# Remember Manager's experience
self.remember_manager(state, option, reward, state, True, td_error=reward)
elif option == 1: # Summarize Option
logger.debug("Executing Summarize Option")
if content:
summary = self.summarizer.generate_summary(content, query)
self.save_llm_training_data(
query,
content,
summary=summary,
link=results[0].get('link') if results else None,
title=results[0].get('title') if results else None
)
reward = self.calculate_reward(summary, query)
next_state = self.extract_features(summary, query)
logger.info(f"Summary:\n{summary}")
logger.info(f"Summarized content. Reward: {reward}")
# Remember Manager's experience
self.remember_manager(state, option, reward, next_state, done, td_error=reward)
# Remember Worker's experience
self.remember_worker(state, 1, reward, next_state, done)
state = next_state.astype(np.float32)
total_reward += reward
else:
reward = -1
logger.warning("No content to summarize")
# Remember Manager's experience
self.remember_manager(state, option, reward, state, True, td_error=reward)
elif option == 2: # RAG-based Generation Option
logger.debug("Executing RAG-based Generation Option")
kb_docs = self.retrieve_from_kb(query, top_k=5)
web_docs = [] # Assuming web_docs are already retrieved
combined_docs = self.combine_documents(kb_docs, web_docs)
generated_output = self.generate_rag_response(query, combined_docs)
logger.info(f"Generated Output:\n{generated_output}")
self.save_llm_training_data(
query,
generated_output,
summary=None,
link=None,
title="RAG-generated response"
)
reward = self.calculate_reward(generated_output, query)
next_state = self.extract_features(generated_output, query)
# Remember Manager's experience
self.remember_manager(state, option, reward, next_state, done, td_error=reward)
# Remember Worker's experience
self.remember_worker(state, 2, reward, next_state, done)
state = next_state.astype(np.float32)
total_reward += reward
else:
logger.warning(f"Unknown option selected by Manager: {option}")
# Perform replay for both Manager and Worker
self.replay_manager(batch_size=32, beta=0.4)
self.replay_worker(batch_size=32, beta=0.4)
# Update target models periodically
self.update_worker_target_model()
self.update_manager_target_model()
logger.info(f"Search completed. Total reward: {total_reward}")
defer.returnValue(total_reward)
except Exception as e:
logger.error(f"Error during search: {str(e)}", exc_info=True)
defer.returnValue(-1) # Return a negative reward on error
# ==========================
# Summarization Method
# ==========================
def summarize(self, content, query):
chunks = self.summarizer.split_into_chunks(content)
embeddings = self.summarizer.get_embeddings(chunks)
relevant_chunks = self.summarizer.retrieve_relevant_chunks(query, chunks, embeddings)
summary = self.summarizer.generate_summary(query, relevant_chunks)
# Save RAG data
self.summarizer.save_rag_data(query, chunks, embeddings)
return summary
# ==========================
# MCTS Iterations Calculation
# ==========================
def calculate_mcts_iterations(self, state):
# Calculate MCTS iterations based on state complexity
base_iterations = 2
complexity_factor = np.mean(state) / 100 # Normalize state values
iterations = int(base_iterations * (1 + complexity_factor))
max_iterations = 5 # Set a reasonable maximum
return min(iterations, max_iterations)
# ==========================
# RAG-based Response Generation
# ==========================
def generate_rag_response(self, query, combined_docs):
if not combined_docs:
logger.warning("No documents available for RAG-based generation.")
return "I'm sorry, I couldn't find any relevant information."
# Prepare context for the generator
context = "\n\n".join([f"Title: {doc.get('title', 'No Title')}\nContent: {doc.get('content', '')}" for doc in combined_docs])
prompt = f"Query: {query}\n\nContext:\n{context}\n\nAnswer:"
# Check cache first
cache_key = hashlib.md5(prompt.encode()).hexdigest()
cached_response = self.summarizer.cache.get(cache_key)
if cached_response:
logger.debug("Using cached RAG response.")
return cached_response
# Generate response
input_ids = self.summarizer.tokenizer.encode(prompt, return_tensors='pt').to(self.summarizer.device)
try:
output = self.summarizer.model.generate(
input_ids,
max_length=input_ids.shape[1] + self.summarizer.max_length,
num_return_sequences=1,
no_repeat_ngram_size=2,
top_k=50,
top_p=0.95,
temperature=0.7,
early_stopping=True
)
except Exception as e:
logger.error(f"Error during RAG response generation: {str(e)}")
return "RAG response generation failed."
response = self.summarizer.tokenizer.decode(output[0], skip_special_tokens=True)
answer = response.split("Answer:")[-1].strip()
# Cache the response
self.summarizer.cache.put(cache_key, answer)
self.summarizer.save_persistent_cache()
return answer
# ==========================
# Manager and Worker Interaction
# ==========================
def select_option(self, option):
"""
Define the mapping of options to their corresponding actions.
"""
# This can be expanded based on the number of options
option_actions = {
0: self.perform_search,
1: self.perform_summarization,
2: self.perform_rag_generation
}
action = option_actions.get(option, None)
if action:
return action
else:
logger.error(f"No action defined for option: {option}")
return None
def perform_search(self, query):
"""
Perform the search action.
"""
# Implementation is handled in the 'search' method
pass
def perform_summarization(self, content, query):
"""
Perform the summarization action.
"""
# Implementation is handled in the 'summarize' method
pass
def perform_rag_generation(self, query, combined_docs):
"""
Perform the RAG-based generation action.
"""
# Implementation is handled in the 'generate_rag_response' method
pass
# ==========================
# LRUCache Class
# ==========================
class LRUCache:
def __init__(self, capacity):
self.cache = OrderedDict()
self.capacity = capacity
def get(self, key):
if key not in self.cache:
return None
self.cache.move_to_end(key)
return self.cache[key]
def put(self, key, value):
if key in self.cache:
self.cache.move_to_end(key)
self.cache[key] = value
if len(self.cache) > self.capacity:
self.cache.popitem(last=False)
|