import argparse import os, sys BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.append(BASE_DIR) import pprint import torch import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.optim import torch.utils.data import torch.utils.data.distributed import torchvision.transforms as transforms import numpy as np from lib.utils import DataLoaderX from tensorboardX import SummaryWriter import lib.dataset as dataset from lib.config import cfg from lib.config import update_config from lib.core.loss import get_loss from lib.core.function import validate from lib.core.general import fitness from lib.models import get_net from lib.utils.utils import create_logger, select_device def parse_args(): parser = argparse.ArgumentParser(description='Test Multitask network') # philly parser.add_argument('--modelDir', help='model directory', type=str, default='') parser.add_argument('--logDir', help='log directory', type=str, default='runs/') parser.add_argument('--weights', nargs='+', type=str, default='/data2/zwt/wd/YOLOP/runs/BddDataset/detect_and_segbranch_whole/epoch-169.pth', help='model.pth path(s)') parser.add_argument('--conf_thres', type=float, default=0.001, help='object confidence threshold') parser.add_argument('--iou_thres', type=float, default=0.6, help='IOU threshold for NMS') args = parser.parse_args() return args def main(): # set all the configurations args = parse_args() update_config(cfg, args) # TODO: handle distributed training logger # set the logger, tb_log_dir means tensorboard logdir logger, final_output_dir, tb_log_dir = create_logger( cfg, cfg.LOG_DIR, 'test') logger.info(pprint.pformat(args)) logger.info(cfg) writer_dict = { 'writer': SummaryWriter(log_dir=tb_log_dir), 'train_global_steps': 0, 'valid_global_steps': 0, } # bulid up model # start_time = time.time() print("begin to bulid up model...") # DP mode device = select_device(logger, batch_size=cfg.TEST.BATCH_SIZE_PER_GPU* len(cfg.GPUS)) if not cfg.DEBUG \ else select_device(logger, 'cpu') # device = select_device(logger, 'cpu') model = get_net(cfg) print("finish build model") # define loss function (criterion) and optimizer criterion = get_loss(cfg, device=device) # load checkpoint model # det_idx_range = [str(i) for i in range(0,25)] model_dict = model.state_dict() checkpoint_file = args.weights logger.info("=> loading checkpoint '{}'".format(checkpoint_file)) checkpoint = torch.load(checkpoint_file) checkpoint_dict = checkpoint['state_dict'] # checkpoint_dict = {k: v for k, v in checkpoint['state_dict'].items() if k.split(".")[1] in det_idx_range} model_dict.update(checkpoint_dict) model.load_state_dict(model_dict) logger.info("=> loaded checkpoint '{}' ".format(checkpoint_file)) model = model.to(device) model.gr = 1.0 model.nc = 1 print('bulid model finished') print("begin to load data") # Data loading normalize = transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) valid_dataset = eval('dataset.' + cfg.DATASET.DATASET)( cfg=cfg, is_train=False, inputsize=cfg.MODEL.IMAGE_SIZE, transform=transforms.Compose([ transforms.ToTensor(), normalize, ]) ) # valid_loader = DataLoaderX( # valid_dataset, # batch_size=cfg.TEST.BATCH_SIZE_PER_GPU * len(cfg.GPUS), # shuffle=False, # num_workers=cfg.WORKERS, # pin_memory=cfg.PIN_MEMORY, # collate_fn=dataset.AutoDriveDataset.collate_fn # ) valid_loader = DataLoaderX( valid_dataset, batch_size=cfg.TEST.BATCH_SIZE_PER_GPU * len(cfg.GPUS), shuffle=False, num_workers=cfg.WORKERS, pin_memory=False, collate_fn=dataset.AutoDriveDataset.collate_fn ) print('load data finished') epoch = 0 #special for test da_segment_results,ll_segment_results,detect_results, total_loss,maps, times = validate( epoch,cfg, valid_loader, valid_dataset, model, criterion, final_output_dir, tb_log_dir, writer_dict, logger, device ) fi = fitness(np.array(detect_results).reshape(1, -1)) msg = 'Test: Loss({loss:.3f})\n' \ 'Driving area Segment: Acc({da_seg_acc:.3f}) IOU ({da_seg_iou:.3f}) mIOU({da_seg_miou:.3f})\n' \ 'Lane line Segment: Acc({ll_seg_acc:.3f}) IOU ({ll_seg_iou:.3f}) mIOU({ll_seg_miou:.3f})\n' \ 'Detect: P({p:.3f}) R({r:.3f}) mAP@0.5({map50:.3f}) mAP@0.5:0.95({map:.3f})\n'\ 'Time: inference({t_inf:.4f}s/frame) nms({t_nms:.4f}s/frame)'.format( loss=total_loss, da_seg_acc=da_segment_results[0],da_seg_iou=da_segment_results[1],da_seg_miou=da_segment_results[2], ll_seg_acc=ll_segment_results[0],ll_seg_iou=ll_segment_results[1],ll_seg_miou=ll_segment_results[2], p=detect_results[0],r=detect_results[1],map50=detect_results[2],map=detect_results[3], t_inf=times[0], t_nms=times[1]) logger.info(msg) print("test finish") if __name__ == '__main__': main()