File size: 5,541 Bytes
67bb36a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import argparse
import os, sys
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(BASE_DIR)
import pprint
import torch
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import numpy as np
from lib.utils import DataLoaderX
from tensorboardX import SummaryWriter
import lib.dataset as dataset
from lib.config import cfg
from lib.config import update_config
from lib.core.loss import get_loss
from lib.core.function import validate
from lib.core.general import fitness
from lib.models import get_net
from lib.utils.utils import create_logger, select_device
def parse_args():
parser = argparse.ArgumentParser(description='Test Multitask network')
# philly
parser.add_argument('--modelDir',
help='model directory',
type=str,
default='')
parser.add_argument('--logDir',
help='log directory',
type=str,
default='runs/')
parser.add_argument('--weights', nargs='+', type=str, default='/data2/zwt/wd/YOLOP/runs/BddDataset/detect_and_segbranch_whole/epoch-169.pth', help='model.pth path(s)')
parser.add_argument('--conf_thres', type=float, default=0.001, help='object confidence threshold')
parser.add_argument('--iou_thres', type=float, default=0.6, help='IOU threshold for NMS')
args = parser.parse_args()
return args
def main():
# set all the configurations
args = parse_args()
update_config(cfg, args)
# TODO: handle distributed training logger
# set the logger, tb_log_dir means tensorboard logdir
logger, final_output_dir, tb_log_dir = create_logger(
cfg, cfg.LOG_DIR, 'test')
logger.info(pprint.pformat(args))
logger.info(cfg)
writer_dict = {
'writer': SummaryWriter(log_dir=tb_log_dir),
'train_global_steps': 0,
'valid_global_steps': 0,
}
# bulid up model
# start_time = time.time()
print("begin to bulid up model...")
# DP mode
device = select_device(logger, batch_size=cfg.TEST.BATCH_SIZE_PER_GPU* len(cfg.GPUS)) if not cfg.DEBUG \
else select_device(logger, 'cpu')
# device = select_device(logger, 'cpu')
model = get_net(cfg)
print("finish build model")
# define loss function (criterion) and optimizer
criterion = get_loss(cfg, device=device)
# load checkpoint model
# det_idx_range = [str(i) for i in range(0,25)]
model_dict = model.state_dict()
checkpoint_file = args.weights
logger.info("=> loading checkpoint '{}'".format(checkpoint_file))
checkpoint = torch.load(checkpoint_file)
checkpoint_dict = checkpoint['state_dict']
# checkpoint_dict = {k: v for k, v in checkpoint['state_dict'].items() if k.split(".")[1] in det_idx_range}
model_dict.update(checkpoint_dict)
model.load_state_dict(model_dict)
logger.info("=> loaded checkpoint '{}' ".format(checkpoint_file))
model = model.to(device)
model.gr = 1.0
model.nc = 1
print('bulid model finished')
print("begin to load data")
# Data loading
normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
valid_dataset = eval('dataset.' + cfg.DATASET.DATASET)(
cfg=cfg,
is_train=False,
inputsize=cfg.MODEL.IMAGE_SIZE,
transform=transforms.Compose([
transforms.ToTensor(),
normalize,
])
)
# valid_loader = DataLoaderX(
# valid_dataset,
# batch_size=cfg.TEST.BATCH_SIZE_PER_GPU * len(cfg.GPUS),
# shuffle=False,
# num_workers=cfg.WORKERS,
# pin_memory=cfg.PIN_MEMORY,
# collate_fn=dataset.AutoDriveDataset.collate_fn
# )
valid_loader = DataLoaderX(
valid_dataset,
batch_size=cfg.TEST.BATCH_SIZE_PER_GPU * len(cfg.GPUS),
shuffle=False,
num_workers=cfg.WORKERS,
pin_memory=False,
collate_fn=dataset.AutoDriveDataset.collate_fn
)
print('load data finished')
epoch = 0 #special for test
da_segment_results,ll_segment_results,detect_results, total_loss,maps, times = validate(
epoch,cfg, valid_loader, valid_dataset, model, criterion,
final_output_dir, tb_log_dir, writer_dict,
logger, device
)
fi = fitness(np.array(detect_results).reshape(1, -1))
msg = 'Test: Loss({loss:.3f})\n' \
'Driving area Segment: Acc({da_seg_acc:.3f}) IOU ({da_seg_iou:.3f}) mIOU({da_seg_miou:.3f})\n' \
'Lane line Segment: Acc({ll_seg_acc:.3f}) IOU ({ll_seg_iou:.3f}) mIOU({ll_seg_miou:.3f})\n' \
'Detect: P({p:.3f}) R({r:.3f}) [email protected]({map50:.3f}) [email protected]:0.95({map:.3f})\n'\
'Time: inference({t_inf:.4f}s/frame) nms({t_nms:.4f}s/frame)'.format(
loss=total_loss, da_seg_acc=da_segment_results[0],da_seg_iou=da_segment_results[1],da_seg_miou=da_segment_results[2],
ll_seg_acc=ll_segment_results[0],ll_seg_iou=ll_segment_results[1],ll_seg_miou=ll_segment_results[2],
p=detect_results[0],r=detect_results[1],map50=detect_results[2],map=detect_results[3],
t_inf=times[0], t_nms=times[1])
logger.info(msg)
print("test finish")
if __name__ == '__main__':
main()
|