File size: 42,448 Bytes
6ed3904 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 |
---
base_model: nomic-ai/nomic-embed-text-v1.5
datasets: []
language: []
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:756057
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: 府君奈何以蓋世之才欲立忠於垂亡之國
sentences:
- 將遠方進貢來的奇獸飛禽以及白山雞等物縱還山林比起雍畤的祭祀禮數頗有增加
- 您為什麼以蓋絕當世的奇才卻打算向這個面臨滅亡的國家盡效忠心呢
- 大統年間他出任岐州刺史在任不久就因為能力強而聞名
- source_sentence: 將率既至授單于印紱詔令上故印紱
sentences:
- 已經到達的五威將到達後授給單于新印信宣讀詔書要求交回漢朝舊印信
- 於是拜陶隗為西南面招討使
- 司馬錯建議秦惠王攻打蜀國張儀說 還不如進攻韓國
- source_sentence: 行醮禮皇太子詣醴席樂作
sentences:
- 閏七月十七日上宣宗廢除皇后胡氏尊諡
- 等到看見西羌鼠竊狗盜父不父子不子君臣沒有分別四夷之人西羌最為低下
- 行醮禮皇太子來到酒醴席奏樂
- source_sentence: 領軍臧盾太府卿沈僧果等並被時遇孝綽尤輕之
sentences:
- 過了幾天太宰官又來要國書並且說 我國自太宰府以東上國使臣沒有到過今大朝派使臣來若不見國書何以相信
- 所以丹陽葛洪解釋說渾天儀注說 天體像雞蛋地就像是雞蛋中的蛋黃獨處於天體之內天是大的而地是小的
- 領軍臧盾太府卿沈僧果等都是因趕上時機而得到官職的孝綽尤其輕蔑他們每次在朝中集合會面雖然一起做官但從不與他們說話
- source_sentence: 九月辛未太祖曾孫舒國公從式進封安定郡王
sentences:
- 九月初二太祖曾孫舒國公從式進封安定郡王
- 楊難當在漢中大肆燒殺搶劫然後率眾離開了漢中向西返回仇池留下趙溫據守梁州又派他的魏興太守薛健屯駐黃金山
- 正統元年普定蠻夷阿遲等反叛非法稱王四處出擊攻打掠奪
---
# SentenceTransformer based on nomic-ai/nomic-embed-text-v1.5
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/nomic-embed-text-v1.5](https://huggingface.co./nomic-ai/nomic-embed-text-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [nomic-ai/nomic-embed-text-v1.5](https://huggingface.co./nomic-ai/nomic-embed-text-v1.5) <!-- at revision c4f06e01594879a8ccc5c40b0b0a0e2ad46e3a62 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'九月辛未太祖曾孫舒國公從式進封安定郡王',
'九月初二太祖曾孫舒國公從式進封安定郡王',
'楊難當在漢中大肆燒殺搶劫然後率眾離開了漢中向西返回仇池留下趙溫據守梁州又派他的魏興太守薛健屯駐黃金山',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 756,057 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 20.76 tokens</li><li>max: 199 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 31.48 tokens</li><li>max: 602 tokens</li></ul> |
* Samples:
| anchor | positive |
|:------------------------------------------|:------------------------------------------------------------|
| <code>虜懷兼弱之威挾廣地之計強兵大眾親自凌殄旍鼓彌年矢石不息</code> | <code>魏人懷有兼併弱小的威嚴胸藏拓展土地的計謀強人的軍隊親自出徵侵逼消滅旌旗戰鼓連年出動戰事不停息</code> |
| <code>孟子曰 以善服人者未有能服人者也以善養人然後能服天下</code> | <code>孟子說 用自己的善良使人們服從的人沒有能使人服從的用善良影響教導人們才能使天下的人們都信服</code> |
| <code>開慶初大元兵渡江理宗議遷都平江慶元后諫不可恐搖動民心乃止</code> | <code>開慶初年大元朝部隊渡過長江理宗打算遷都到平江慶元皇后勸諫不可遷都深恐動搖民心理宗才作罷</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 84,007 evaluation samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 20.23 tokens</li><li>max: 138 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 31.45 tokens</li><li>max: 415 tokens</li></ul> |
* Samples:
| anchor | positive |
|:--------------------------------------------------|:------------------------------------------------------------------|
| <code>雒陽戶五萬二千八百三十九</code> | <code>雒陽有五萬二千八百三十九戶</code> |
| <code>拜南青州刺史在任有政績</code> | <code>任南青州刺史很有政績</code> |
| <code>第六品以下加不得服金釒奠綾錦錦繡七緣綺貂豽裘金叉環鉺及以金校飾器物張絳帳</code> | <code>官位在第六品以下的官員再增加不得穿用金鈿綾錦錦繡七緣綺貂鈉皮衣金叉繯餌以及用金裝飾的器物張絳帳等衣服物品</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | loss |
|:----------:|:---------:|:-------------:|:----------:|
| 0.0021 | 100 | 0.4574 | - |
| 0.0042 | 200 | 0.4089 | - |
| 0.0063 | 300 | 0.2872 | - |
| 0.0085 | 400 | 0.2909 | - |
| 0.0106 | 500 | 0.3076 | - |
| 0.0127 | 600 | 0.2958 | - |
| 0.0148 | 700 | 0.2953 | - |
| 0.0169 | 800 | 0.31 | - |
| 0.0190 | 900 | 0.3031 | - |
| 0.0212 | 1000 | 0.263 | - |
| 0.0233 | 1100 | 0.27 | - |
| 0.0254 | 1200 | 0.3107 | - |
| 0.0275 | 1300 | 0.2453 | - |
| 0.0296 | 1400 | 0.2487 | - |
| 0.0317 | 1500 | 0.2332 | - |
| 0.0339 | 1600 | 0.2708 | - |
| 0.0360 | 1700 | 0.2731 | - |
| 0.0381 | 1800 | 0.3102 | - |
| 0.0402 | 1900 | 0.3385 | - |
| 0.0423 | 2000 | 0.2802 | - |
| 0.0444 | 2100 | 0.3348 | - |
| 0.0466 | 2200 | 0.2527 | - |
| 0.0487 | 2300 | 0.2916 | - |
| 0.0508 | 2400 | 0.2671 | - |
| 0.0529 | 2500 | 0.2187 | - |
| 0.0550 | 2600 | 0.2624 | - |
| 0.0571 | 2700 | 0.3061 | - |
| 0.0593 | 2800 | 0.2439 | - |
| 0.0614 | 2900 | 0.2831 | - |
| 0.0635 | 3000 | 0.2948 | - |
| 0.0656 | 3100 | 0.2828 | - |
| 0.0677 | 3200 | 0.3079 | - |
| 0.0698 | 3300 | 0.3194 | - |
| 0.0720 | 3400 | 0.2768 | - |
| 0.0741 | 3500 | 0.304 | - |
| 0.0762 | 3600 | 0.3056 | - |
| 0.0783 | 3700 | 0.2562 | - |
| 0.0804 | 3800 | 0.3138 | - |
| 0.0825 | 3900 | 0.3081 | - |
| 0.0846 | 4000 | 0.2733 | - |
| 0.0868 | 4100 | 0.3065 | - |
| 0.0889 | 4200 | 0.25 | - |
| 0.0910 | 4300 | 0.3076 | - |
| 0.0931 | 4400 | 0.2935 | - |
| 0.0952 | 4500 | 0.2644 | - |
| 0.0973 | 4600 | 0.2943 | - |
| 0.0995 | 4700 | 0.316 | - |
| 0.1016 | 4800 | 0.2616 | - |
| 0.1037 | 4900 | 0.2985 | - |
| 0.1058 | 5000 | 0.2962 | 0.2798 |
| 0.1079 | 5100 | 0.2872 | - |
| 0.1100 | 5200 | 0.2963 | - |
| 0.1122 | 5300 | 0.2968 | - |
| 0.1143 | 5400 | 0.2738 | - |
| 0.1164 | 5500 | 0.3198 | - |
| 0.1185 | 5600 | 0.294 | - |
| 0.1206 | 5700 | 0.3296 | - |
| 0.1227 | 5800 | 0.2605 | - |
| 0.1249 | 5900 | 0.3187 | - |
| 0.1270 | 6000 | 0.2657 | - |
| 0.1291 | 6100 | 0.3267 | - |
| 0.1312 | 6200 | 0.3839 | - |
| 0.1333 | 6300 | 0.3077 | - |
| 0.1354 | 6400 | 0.205 | - |
| 0.1376 | 6500 | 0.2839 | - |
| 0.1397 | 6600 | 0.3037 | - |
| 0.1418 | 6700 | 0.2694 | - |
| 0.1439 | 6800 | 0.2956 | - |
| 0.1460 | 6900 | 0.261 | - |
| 0.1481 | 7000 | 0.3173 | - |
| 0.1503 | 7100 | 0.2492 | - |
| 0.1524 | 7200 | 0.2885 | - |
| 0.1545 | 7300 | 0.3059 | - |
| 0.1566 | 7400 | 0.2883 | - |
| 0.1587 | 7500 | 0.2465 | - |
| 0.1608 | 7600 | 0.2926 | - |
| 0.1629 | 7700 | 0.2776 | - |
| 0.1651 | 7800 | 0.2769 | - |
| 0.1672 | 7900 | 0.2644 | - |
| 0.1693 | 8000 | 0.2416 | - |
| 0.1714 | 8100 | 0.254 | - |
| 0.1735 | 8200 | 0.2485 | - |
| 0.1756 | 8300 | 0.3029 | - |
| 0.1778 | 8400 | 0.2938 | - |
| 0.1799 | 8500 | 0.2936 | - |
| 0.1820 | 8600 | 0.2804 | - |
| 0.1841 | 8700 | 0.2408 | - |
| 0.1862 | 8800 | 0.2849 | - |
| 0.1883 | 8900 | 0.2954 | - |
| 0.1905 | 9000 | 0.2902 | - |
| 0.1926 | 9100 | 0.2845 | - |
| 0.1947 | 9200 | 0.3143 | - |
| 0.1968 | 9300 | 0.2514 | - |
| 0.1989 | 9400 | 0.2508 | - |
| 0.2010 | 9500 | 0.2782 | - |
| 0.2032 | 9600 | 0.291 | - |
| 0.2053 | 9700 | 0.2464 | - |
| 0.2074 | 9800 | 0.323 | - |
| 0.2095 | 9900 | 0.2332 | - |
| 0.2116 | 10000 | 0.2231 | 0.2521 |
| 0.2137 | 10100 | 0.245 | - |
| 0.2159 | 10200 | 0.2883 | - |
| 0.2180 | 10300 | 0.3097 | - |
| 0.2201 | 10400 | 0.2303 | - |
| 0.2222 | 10500 | 0.3194 | - |
| 0.2243 | 10600 | 0.2836 | - |
| 0.2264 | 10700 | 0.2727 | - |
| 0.2286 | 10800 | 0.2542 | - |
| 0.2307 | 10900 | 0.2708 | - |
| 0.2328 | 11000 | 0.263 | - |
| 0.2349 | 11100 | 0.3063 | - |
| 0.2370 | 11200 | 0.2667 | - |
| 0.2391 | 11300 | 0.2575 | - |
| 0.2412 | 11400 | 0.2487 | - |
| 0.2434 | 11500 | 0.2552 | - |
| 0.2455 | 11600 | 0.2669 | - |
| 0.2476 | 11700 | 0.2241 | - |
| 0.2497 | 11800 | 0.3029 | - |
| 0.2518 | 11900 | 0.2443 | - |
| 0.2539 | 12000 | 0.2961 | - |
| 0.2561 | 12100 | 0.2561 | - |
| 0.2582 | 12200 | 0.2436 | - |
| 0.2603 | 12300 | 0.2601 | - |
| 0.2624 | 12400 | 0.2553 | - |
| 0.2645 | 12500 | 0.2617 | - |
| 0.2666 | 12600 | 0.2581 | - |
| 0.2688 | 12700 | 0.2452 | - |
| 0.2709 | 12800 | 0.2227 | - |
| 0.2730 | 12900 | 0.2455 | - |
| 0.2751 | 13000 | 0.2469 | - |
| 0.2772 | 13100 | 0.2197 | - |
| 0.2793 | 13200 | 0.3086 | - |
| 0.2815 | 13300 | 0.2379 | - |
| 0.2836 | 13400 | 0.2441 | - |
| 0.2857 | 13500 | 0.2854 | - |
| 0.2878 | 13600 | 0.2405 | - |
| 0.2899 | 13700 | 0.2681 | - |
| 0.2920 | 13800 | 0.2405 | - |
| 0.2942 | 13900 | 0.251 | - |
| 0.2963 | 14000 | 0.2477 | - |
| 0.2984 | 14100 | 0.231 | - |
| 0.3005 | 14200 | 0.26 | - |
| 0.3026 | 14300 | 0.2395 | - |
| 0.3047 | 14400 | 0.2296 | - |
| 0.3069 | 14500 | 0.2554 | - |
| 0.3090 | 14600 | 0.2434 | - |
| 0.3111 | 14700 | 0.2247 | - |
| 0.3132 | 14800 | 0.267 | - |
| 0.3153 | 14900 | 0.2212 | - |
| 0.3174 | 15000 | 0.2744 | 0.2352 |
| 0.3195 | 15100 | 0.2168 | - |
| 0.3217 | 15200 | 0.2042 | - |
| 0.3238 | 15300 | 0.2187 | - |
| 0.3259 | 15400 | 0.2368 | - |
| 0.3280 | 15500 | 0.2693 | - |
| 0.3301 | 15600 | 0.255 | - |
| 0.3322 | 15700 | 0.2398 | - |
| 0.3344 | 15800 | 0.247 | - |
| 0.3365 | 15900 | 0.2431 | - |
| 0.3386 | 16000 | 0.2349 | - |
| 0.3407 | 16100 | 0.212 | - |
| 0.3428 | 16200 | 0.2875 | - |
| 0.3449 | 16300 | 0.2571 | - |
| 0.3471 | 16400 | 0.2513 | - |
| 0.3492 | 16500 | 0.2729 | - |
| 0.3513 | 16600 | 0.2755 | - |
| 0.3534 | 16700 | 0.2079 | - |
| 0.3555 | 16800 | 0.1997 | - |
| 0.3576 | 16900 | 0.2217 | - |
| 0.3598 | 17000 | 0.1887 | - |
| 0.3619 | 17100 | 0.2623 | - |
| 0.3640 | 17200 | 0.2049 | - |
| 0.3661 | 17300 | 0.2 | - |
| 0.3682 | 17400 | 0.2367 | - |
| 0.3703 | 17500 | 0.2368 | - |
| 0.3725 | 17600 | 0.2311 | - |
| 0.3746 | 17700 | 0.2359 | - |
| 0.3767 | 17800 | 0.2586 | - |
| 0.3788 | 17900 | 0.2222 | - |
| 0.3809 | 18000 | 0.2561 | - |
| 0.3830 | 18100 | 0.2246 | - |
| 0.3852 | 18200 | 0.1871 | - |
| 0.3873 | 18300 | 0.2147 | - |
| 0.3894 | 18400 | 0.2741 | - |
| 0.3915 | 18500 | 0.2079 | - |
| 0.3936 | 18600 | 0.2399 | - |
| 0.3957 | 18700 | 0.2375 | - |
| 0.3978 | 18800 | 0.2502 | - |
| 0.4000 | 18900 | 0.2385 | - |
| 0.4021 | 19000 | 0.2647 | - |
| 0.4042 | 19100 | 0.1847 | - |
| 0.4063 | 19200 | 0.2367 | - |
| 0.4084 | 19300 | 0.2148 | - |
| 0.4105 | 19400 | 0.1826 | - |
| 0.4127 | 19500 | 0.225 | - |
| 0.4148 | 19600 | 0.2415 | - |
| 0.4169 | 19700 | 0.2998 | - |
| 0.4190 | 19800 | 0.2435 | - |
| 0.4211 | 19900 | 0.2283 | - |
| 0.4232 | 20000 | 0.2782 | 0.2263 |
| 0.4254 | 20100 | 0.2786 | - |
| 0.4275 | 20200 | 0.2695 | - |
| 0.4296 | 20300 | 0.2112 | - |
| 0.4317 | 20400 | 0.2006 | - |
| 0.4338 | 20500 | 0.2031 | - |
| 0.4359 | 20600 | 0.2335 | - |
| 0.4381 | 20700 | 0.2154 | - |
| 0.4402 | 20800 | 0.2225 | - |
| 0.4423 | 20900 | 0.2234 | - |
| 0.4444 | 21000 | 0.2233 | - |
| 0.4465 | 21100 | 0.1851 | - |
| 0.4486 | 21200 | 0.2009 | - |
| 0.4508 | 21300 | 0.2337 | - |
| 0.4529 | 21400 | 0.2175 | - |
| 0.4550 | 21500 | 0.2564 | - |
| 0.4571 | 21600 | 0.205 | - |
| 0.4592 | 21700 | 0.233 | - |
| 0.4613 | 21800 | 0.2027 | - |
| 0.4635 | 21900 | 0.209 | - |
| 0.4656 | 22000 | 0.261 | - |
| 0.4677 | 22100 | 0.1755 | - |
| 0.4698 | 22200 | 0.2219 | - |
| 0.4719 | 22300 | 0.2108 | - |
| 0.4740 | 22400 | 0.212 | - |
| 0.4762 | 22500 | 0.2676 | - |
| 0.4783 | 22600 | 0.2314 | - |
| 0.4804 | 22700 | 0.1838 | - |
| 0.4825 | 22800 | 0.1967 | - |
| 0.4846 | 22900 | 0.2412 | - |
| 0.4867 | 23000 | 0.2203 | - |
| 0.4888 | 23100 | 0.2183 | - |
| 0.4910 | 23200 | 0.239 | - |
| 0.4931 | 23300 | 0.2273 | - |
| 0.4952 | 23400 | 0.2335 | - |
| 0.4973 | 23500 | 0.202 | - |
| 0.4994 | 23600 | 0.2176 | - |
| 0.5015 | 23700 | 0.2331 | - |
| 0.5037 | 23800 | 0.1949 | - |
| 0.5058 | 23900 | 0.2321 | - |
| 0.5079 | 24000 | 0.2046 | - |
| 0.5100 | 24100 | 0.2092 | - |
| 0.5121 | 24200 | 0.2195 | - |
| 0.5142 | 24300 | 0.2069 | - |
| 0.5164 | 24400 | 0.2049 | - |
| 0.5185 | 24500 | 0.2955 | - |
| 0.5206 | 24600 | 0.2101 | - |
| 0.5227 | 24700 | 0.2036 | - |
| 0.5248 | 24800 | 0.2507 | - |
| 0.5269 | 24900 | 0.2343 | - |
| 0.5291 | 25000 | 0.2026 | 0.2072 |
| 0.5312 | 25100 | 0.2288 | - |
| 0.5333 | 25200 | 0.2208 | - |
| 0.5354 | 25300 | 0.1914 | - |
| 0.5375 | 25400 | 0.1903 | - |
| 0.5396 | 25500 | 0.2156 | - |
| 0.5418 | 25600 | 0.216 | - |
| 0.5439 | 25700 | 0.1909 | - |
| 0.5460 | 25800 | 0.2265 | - |
| 0.5481 | 25900 | 0.2447 | - |
| 0.5502 | 26000 | 0.1879 | - |
| 0.5523 | 26100 | 0.204 | - |
| 0.5545 | 26200 | 0.2262 | - |
| 0.5566 | 26300 | 0.2448 | - |
| 0.5587 | 26400 | 0.1758 | - |
| 0.5608 | 26500 | 0.2102 | - |
| 0.5629 | 26600 | 0.2175 | - |
| 0.5650 | 26700 | 0.2109 | - |
| 0.5671 | 26800 | 0.202 | - |
| 0.5693 | 26900 | 0.2075 | - |
| 0.5714 | 27000 | 0.2021 | - |
| 0.5735 | 27100 | 0.1799 | - |
| 0.5756 | 27200 | 0.2084 | - |
| 0.5777 | 27300 | 0.2114 | - |
| 0.5798 | 27400 | 0.1851 | - |
| 0.5820 | 27500 | 0.22 | - |
| 0.5841 | 27600 | 0.181 | - |
| 0.5862 | 27700 | 0.2276 | - |
| 0.5883 | 27800 | 0.1944 | - |
| 0.5904 | 27900 | 0.1907 | - |
| 0.5925 | 28000 | 0.2176 | - |
| 0.5947 | 28100 | 0.2243 | - |
| 0.5968 | 28200 | 0.2191 | - |
| 0.5989 | 28300 | 0.2215 | - |
| 0.6010 | 28400 | 0.1769 | - |
| 0.6031 | 28500 | 0.1971 | - |
| 0.6052 | 28600 | 0.179 | - |
| 0.6074 | 28700 | 0.2308 | - |
| 0.6095 | 28800 | 0.2453 | - |
| 0.6116 | 28900 | 0.2293 | - |
| 0.6137 | 29000 | 0.2191 | - |
| 0.6158 | 29100 | 0.1988 | - |
| 0.6179 | 29200 | 0.1878 | - |
| 0.6201 | 29300 | 0.2215 | - |
| 0.6222 | 29400 | 0.2188 | - |
| 0.6243 | 29500 | 0.1821 | - |
| 0.6264 | 29600 | 0.1856 | - |
| 0.6285 | 29700 | 0.1907 | - |
| 0.6306 | 29800 | 0.1999 | - |
| 0.6328 | 29900 | 0.1803 | - |
| 0.6349 | 30000 | 0.201 | 0.1948 |
| 0.6370 | 30100 | 0.179 | - |
| 0.6391 | 30200 | 0.2073 | - |
| 0.6412 | 30300 | 0.2676 | - |
| 0.6433 | 30400 | 0.1824 | - |
| 0.6454 | 30500 | 0.1995 | - |
| 0.6476 | 30600 | 0.2097 | - |
| 0.6497 | 30700 | 0.2421 | - |
| 0.6518 | 30800 | 0.1745 | - |
| 0.6539 | 30900 | 0.2682 | - |
| 0.6560 | 31000 | 0.1892 | - |
| 0.6581 | 31100 | 0.2054 | - |
| 0.6603 | 31200 | 0.23 | - |
| 0.6624 | 31300 | 0.1711 | - |
| 0.6645 | 31400 | 0.2163 | - |
| 0.6666 | 31500 | 0.196 | - |
| 0.6687 | 31600 | 0.1746 | - |
| 0.6708 | 31700 | 0.2402 | - |
| 0.6730 | 31800 | 0.2096 | - |
| 0.6751 | 31900 | 0.1934 | - |
| 0.6772 | 32000 | 0.2021 | - |
| 0.6793 | 32100 | 0.1942 | - |
| 0.6814 | 32200 | 0.2076 | - |
| 0.6835 | 32300 | 0.1662 | - |
| 0.6857 | 32400 | 0.1777 | - |
| 0.6878 | 32500 | 0.1899 | - |
| 0.6899 | 32600 | 0.2253 | - |
| 0.6920 | 32700 | 0.221 | - |
| 0.6941 | 32800 | 0.1797 | - |
| 0.6962 | 32900 | 0.1884 | - |
| 0.6984 | 33000 | 0.2185 | - |
| 0.7005 | 33100 | 0.193 | - |
| 0.7026 | 33200 | 0.1975 | - |
| 0.7047 | 33300 | 0.1774 | - |
| 0.7068 | 33400 | 0.1709 | - |
| 0.7089 | 33500 | 0.1753 | - |
| 0.7111 | 33600 | 0.1834 | - |
| 0.7132 | 33700 | 0.1853 | - |
| 0.7153 | 33800 | 0.2155 | - |
| 0.7174 | 33900 | 0.1837 | - |
| 0.7195 | 34000 | 0.1655 | - |
| 0.7216 | 34100 | 0.212 | - |
| 0.7237 | 34200 | 0.2203 | - |
| 0.7259 | 34300 | 0.2267 | - |
| 0.7280 | 34400 | 0.208 | - |
| 0.7301 | 34500 | 0.1545 | - |
| 0.7322 | 34600 | 0.2003 | - |
| 0.7343 | 34700 | 0.2058 | - |
| 0.7364 | 34800 | 0.1837 | - |
| 0.7386 | 34900 | 0.2199 | - |
| 0.7407 | 35000 | 0.1931 | 0.1848 |
| 0.7428 | 35100 | 0.2456 | - |
| 0.7449 | 35200 | 0.1996 | - |
| 0.7470 | 35300 | 0.2145 | - |
| 0.7491 | 35400 | 0.1915 | - |
| 0.7513 | 35500 | 0.1734 | - |
| 0.7534 | 35600 | 0.19 | - |
| 0.7555 | 35700 | 0.182 | - |
| 0.7576 | 35800 | 0.1808 | - |
| 0.7597 | 35900 | 0.1625 | - |
| 0.7618 | 36000 | 0.1813 | - |
| 0.7640 | 36100 | 0.1412 | - |
| 0.7661 | 36200 | 0.2279 | - |
| 0.7682 | 36300 | 0.2444 | - |
| 0.7703 | 36400 | 0.1882 | - |
| 0.7724 | 36500 | 0.1731 | - |
| 0.7745 | 36600 | 0.1794 | - |
| 0.7767 | 36700 | 0.2577 | - |
| 0.7788 | 36800 | 0.169 | - |
| 0.7809 | 36900 | 0.1725 | - |
| 0.7830 | 37000 | 0.1788 | - |
| 0.7851 | 37100 | 0.1783 | - |
| 0.7872 | 37200 | 0.1764 | - |
| 0.7894 | 37300 | 0.1616 | - |
| 0.7915 | 37400 | 0.21 | - |
| 0.7936 | 37500 | 0.2091 | - |
| 0.7957 | 37600 | 0.1107 | - |
| 0.7978 | 37700 | 0.1773 | - |
| 0.7999 | 37800 | 0.1801 | - |
| 0.8020 | 37900 | 0.1621 | - |
| 0.8042 | 38000 | 0.189 | - |
| 0.8063 | 38100 | 0.182 | - |
| 0.8084 | 38200 | 0.1912 | - |
| 0.8105 | 38300 | 0.1731 | - |
| 0.8126 | 38400 | 0.1646 | - |
| 0.8147 | 38500 | 0.2037 | - |
| 0.8169 | 38600 | 0.1418 | - |
| 0.8190 | 38700 | 0.1485 | - |
| 0.8211 | 38800 | 0.2221 | - |
| 0.8232 | 38900 | 0.1886 | - |
| 0.8253 | 39000 | 0.2082 | - |
| 0.8274 | 39100 | 0.1742 | - |
| 0.8296 | 39200 | 0.1589 | - |
| 0.8317 | 39300 | 0.1959 | - |
| 0.8338 | 39400 | 0.1517 | - |
| 0.8359 | 39500 | 0.2049 | - |
| 0.8380 | 39600 | 0.2187 | - |
| 0.8401 | 39700 | 0.1801 | - |
| 0.8423 | 39800 | 0.1735 | - |
| 0.8444 | 39900 | 0.1881 | - |
| 0.8465 | 40000 | 0.1778 | 0.1787 |
| 0.8486 | 40100 | 0.1898 | - |
| 0.8507 | 40200 | 0.2021 | - |
| 0.8528 | 40300 | 0.1972 | - |
| 0.8550 | 40400 | 0.156 | - |
| 0.8571 | 40500 | 0.1791 | - |
| 0.8592 | 40600 | 0.188 | - |
| 0.8613 | 40700 | 0.2177 | - |
| 0.8634 | 40800 | 0.1287 | - |
| 0.8655 | 40900 | 0.1797 | - |
| 0.8677 | 41000 | 0.1533 | - |
| 0.8698 | 41100 | 0.1668 | - |
| 0.8719 | 41200 | 0.2047 | - |
| 0.8740 | 41300 | 0.1619 | - |
| 0.8761 | 41400 | 0.165 | - |
| 0.8782 | 41500 | 0.1781 | - |
| 0.8803 | 41600 | 0.2221 | - |
| 0.8825 | 41700 | 0.2031 | - |
| 0.8846 | 41800 | 0.1732 | - |
| 0.8867 | 41900 | 0.1599 | - |
| 0.8888 | 42000 | 0.1865 | - |
| 0.8909 | 42100 | 0.1367 | - |
| 0.8930 | 42200 | 0.1469 | - |
| 0.8952 | 42300 | 0.1777 | - |
| 0.8973 | 42400 | 0.1833 | - |
| 0.8994 | 42500 | 0.2102 | - |
| 0.9015 | 42600 | 0.164 | - |
| 0.9036 | 42700 | 0.1752 | - |
| 0.9057 | 42800 | 0.2186 | - |
| 0.9079 | 42900 | 0.1824 | - |
| 0.9100 | 43000 | 0.1796 | - |
| 0.9121 | 43100 | 0.1626 | - |
| 0.9142 | 43200 | 0.1623 | - |
| 0.9163 | 43300 | 0.2036 | - |
| 0.9184 | 43400 | 0.1365 | - |
| 0.9206 | 43500 | 0.1792 | - |
| 0.9227 | 43600 | 0.1583 | - |
| 0.9248 | 43700 | 0.1943 | - |
| 0.9269 | 43800 | 0.1931 | - |
| 0.9290 | 43900 | 0.1777 | - |
| 0.9311 | 44000 | 0.1633 | - |
| 0.9333 | 44100 | 0.1841 | - |
| 0.9354 | 44200 | 0.1674 | - |
| 0.9375 | 44300 | 0.1958 | - |
| 0.9396 | 44400 | 0.1831 | - |
| 0.9417 | 44500 | 0.1899 | - |
| 0.9438 | 44600 | 0.177 | - |
| 0.9460 | 44700 | 0.1881 | - |
| 0.9481 | 44800 | 0.1643 | - |
| 0.9502 | 44900 | 0.1462 | - |
| **0.9523** | **45000** | **0.2118** | **0.1719** |
| 0.9544 | 45100 | 0.1655 | - |
| 0.9565 | 45200 | 0.1567 | - |
| 0.9586 | 45300 | 0.1429 | - |
| 0.9608 | 45400 | 0.1718 | - |
| 0.9629 | 45500 | 0.1549 | - |
| 0.9650 | 45600 | 0.1556 | - |
| 0.9671 | 45700 | 0.1323 | - |
| 0.9692 | 45800 | 0.1988 | - |
| 0.9713 | 45900 | 0.15 | - |
| 0.9735 | 46000 | 0.1546 | - |
| 0.9756 | 46100 | 0.1472 | - |
| 0.9777 | 46200 | 0.196 | - |
| 0.9798 | 46300 | 0.1913 | - |
| 0.9819 | 46400 | 0.2261 | - |
| 0.9840 | 46500 | 0.1842 | - |
| 0.9862 | 46600 | 0.172 | - |
| 0.9883 | 46700 | 0.1925 | - |
| 0.9904 | 46800 | 0.1928 | - |
| 0.9925 | 46900 | 0.1698 | - |
| 0.9946 | 47000 | 0.1778 | - |
| 0.9967 | 47100 | 0.1497 | - |
| 0.9989 | 47200 | 0.1506 | - |
* The bold row denotes the saved checkpoint.
</details>
### Framework Versions
- Python: 3.12.4
- Sentence Transformers: 3.1.0.dev0
- Transformers: 4.42.4
- PyTorch: 2.3.1+cpu
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |