File size: 41,568 Bytes
32d9520
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
---

base_model: sentence-transformers/all-mpnet-base-v2
datasets: []
language: []
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:756057
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: 府君奈何以盖世之才欲立忠于垂亡之国
  sentences:
  - 将远方进贡来的奇兽飞禽以及白山鸡等物纵还山林比起雍畤的祭祀礼数颇有增加
  - 您为什么以盖绝当世的奇才却打算向这个面临灭亡的国家尽效忠心呢
  - 大统年间他出任岐州刺史在任不久就因为能力强而闻名
- source_sentence: 将率既至授单于印绂诏令上故印绂
  sentences:
  - 已经到达的五威将到达后授给单于新印信宣读诏书要求交回汉朝旧印信
  - 于是拜陶隗为西南面招讨使
  - 司马错建议秦惠王攻打蜀国张仪说 还不如进攻韩国
- source_sentence: 行醮礼皇太子诣醴席乐作
  sentences:
  - 闰七月十七日上宣宗废除皇后胡氏尊谥
  - 等到看见西羌鼠窃狗盗父不父子不子君臣没有分别四夷之人西羌最为低下
  - 行醮礼皇太子来到酒醴席奏乐
- source_sentence: 领军臧盾太府卿沈僧果等并被时遇孝绰尤轻之
  sentences:
  - 过了几天太宰官又来要国书并且说 我国自太宰府以东上国使臣没有到过今大朝派使臣来若不见国书何以相信
  - 所以丹阳葛洪解释说浑天仪注说 天体像鸡蛋地就像是鸡蛋中的蛋黄独处于天体之内天是大的而地是小的
  - 领军臧盾太府卿沈僧果等都是因赶上时机而得到官职的孝绰尤其轻蔑他们每次在朝中集合会面虽然一起做官但从不与他们说话
- source_sentence: 九月辛未太祖曾孙舒国公从式进封安定郡王
  sentences:
  - 九月初二太祖曾孙舒国公从式进封安定郡王
  - 杨难当在汉中大肆烧杀抢劫然后率众离开了汉中向西返回仇池留下赵温据守梁州又派他的魏兴太守薛健屯驻黄金山
  - 正统元年普定蛮夷阿迟等反叛非法称王四处出击攻打掠夺
---


# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co./sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co./sentence-transformers/all-mpnet-base-v2) <!-- at revision 84f2bcc00d77236f9e89c8a360a00fb1139bf47d -->
- **Maximum Sequence Length:** 384 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)

### Full Model Architecture

```

SentenceTransformer(

  (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel 

  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})

  (2): Normalize()

)

```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash

pip install -U sentence-transformers

```

Then you can load this model and run inference.
```python

from sentence_transformers import SentenceTransformer



# Download from the 🤗 Hub

model = SentenceTransformer("sentence_transformers_model_id")

# Run inference

sentences = [

    '九月辛未太祖曾孙舒国公从式进封安定郡王',

    '九月初二太祖曾孙舒国公从式进封安定郡王',

    '杨难当在汉中大肆烧杀抢劫然后率众离开了汉中向西返回仇池留下赵温据守梁州又派他的魏兴太守薛健屯驻黄金山',

]

embeddings = model.encode(sentences)

print(embeddings.shape)

# [3, 768]



# Get the similarity scores for the embeddings

similarities = model.similarity(embeddings, embeddings)

print(similarities.shape)

# [3, 3]

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 756,057 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                             | positive                                                                           |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             |
  | details | <ul><li>min: 4 tokens</li><li>mean: 20.76 tokens</li><li>max: 199 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 31.27 tokens</li><li>max: 384 tokens</li></ul> |
* Samples:
  | anchor                                    | positive                                                    |
  |:------------------------------------------|:------------------------------------------------------------|
  | <code>虏怀兼弱之威挟广地之计强兵大众亲自凌殄旍鼓弥年矢石不息</code>  | <code>魏人怀有兼并弱小的威严胸藏拓展土地的计谋强人的军队亲自出征侵逼消灭旌旗战鼓连年出动战事不停息</code> |
  | <code>孟子曰 以善服人者未有能服人者也以善养人然后能服天下</code>   | <code>孟子说 用自己的善良使人们服从的人没有能使人服从的用善良影响教导人们才能使天下的人们都信服</code>  |
  | <code>开庆初大元兵渡江理宗议迁都平江庆元后谏不可恐摇动民心乃止</code> | <code>开庆初年大元朝部队渡过长江理宗打算迁都到平江庆元皇后劝谏不可迁都深恐动摇民心理宗才作罢</code>    |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json

  {

      "scale": 20.0,

      "similarity_fct": "cos_sim"

  }

  ```

### Evaluation Dataset

#### Unnamed Dataset


* Size: 84,007 evaluation samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                             | positive                                                                           |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             |
  | details | <ul><li>min: 4 tokens</li><li>mean: 20.23 tokens</li><li>max: 138 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 31.42 tokens</li><li>max: 384 tokens</li></ul> |
* Samples:
  | anchor                                            | positive                                                          |
  |:--------------------------------------------------|:------------------------------------------------------------------|
  | <code>雒阳户五万二千八百三十九</code>                         | <code>雒阳有五万二千八百三十九户</code>                                        |
  | <code>拜南青州刺史在任有政绩</code>                          | <code>任南青州刺史很有政绩</code>                                           |
  | <code>第六品以下加不得服金钅奠绫锦锦绣七缘绮貂豽裘金叉环铒及以金校饰器物张绛帐</code> | <code>官位在第六品以下的官员再增加不得穿用金钿绫锦锦绣七缘绮貂钠皮衣金叉缳饵以及用金装饰的器物张绛帐等衣服物品</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json

  {

      "scale": 20.0,

      "similarity_fct": "cos_sim"

  }

  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
- `batch_sampler`: no_duplicates



#### All Hyperparameters

<details><summary>Click to expand</summary>



- `overwrite_output_dir`: False

- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch

- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save

- `hub_private_repo`: False

- `hub_always_push`: False

- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `batch_sampler`: no_duplicates

- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch      | Step      | Training Loss | loss     |
|:----------:|:---------:|:-------------:|:--------:|
| 0.0021     | 100       | 0.6475        | -        |
| 0.0042     | 200       | 0.5193        | -        |
| 0.0063     | 300       | 0.4132        | -        |
| 0.0085     | 400       | 0.3981        | -        |
| 0.0106     | 500       | 0.4032        | -        |
| 0.0127     | 600       | 0.3627        | -        |
| 0.0148     | 700       | 0.3821        | -        |
| 0.0169     | 800       | 0.3767        | -        |
| 0.0190     | 900       | 0.3731        | -        |
| 0.0212     | 1000      | 0.3744        | -        |
| 0.0233     | 1100      | 0.3115        | -        |
| 0.0254     | 1200      | 0.3998        | -        |
| 0.0275     | 1300      | 0.3103        | -        |
| 0.0296     | 1400      | 0.3251        | -        |
| 0.0317     | 1500      | 0.2833        | -        |
| 0.0339     | 1600      | 0.3335        | -        |
| 0.0360     | 1700      | 0.3281        | -        |
| 0.0381     | 1800      | 0.423         | -        |
| 0.0402     | 1900      | 0.3687        | -        |
| 0.0423     | 2000      | 0.3452        | -        |
| 0.0444     | 2100      | 0.8643        | -        |
| 0.0466     | 2200      | 0.4279        | -        |
| 0.0487     | 2300      | 0.4188        | -        |
| 0.0508     | 2400      | 0.3676        | -        |
| 0.0529     | 2500      | 0.3279        | -        |
| 0.0550     | 2600      | 0.3415        | -        |
| 0.0571     | 2700      | 1.5834        | -        |
| 0.0593     | 2800      | 2.7778        | -        |
| 0.0614     | 2900      | 2.7734        | -        |
| 0.0635     | 3000      | 2.7732        | -        |
| 0.0656     | 3100      | 2.7751        | -        |
| 0.0677     | 3200      | 2.7731        | -        |
| 0.0698     | 3300      | 2.773         | -        |
| 0.0720     | 3400      | 2.7727        | -        |
| 0.0741     | 3500      | 2.7534        | -        |
| 0.0762     | 3600      | 2.2219        | -        |
| 0.0783     | 3700      | 0.5137        | -        |
| 0.0804     | 3800      | 0.4143        | -        |
| 0.0825     | 3900      | 0.4002        | -        |
| 0.0846     | 4000      | 0.368         | -        |
| 0.0868     | 4100      | 0.3879        | -        |
| 0.0889     | 4200      | 0.3519        | -        |
| 0.0910     | 4300      | 0.364         | -        |
| 0.0931     | 4400      | 0.3618        | -        |
| 0.0952     | 4500      | 0.3545        | -        |
| 0.0973     | 4600      | 0.379         | -        |
| 0.0995     | 4700      | 0.3837        | -        |
| 0.1016     | 4800      | 0.3553        | -        |
| 0.1037     | 4900      | 0.3519        | -        |
| 0.1058     | 5000      | 0.3416        | 0.3487   |
| 0.1079     | 5100      | 0.3763        | -        |
| 0.1100     | 5200      | 0.3748        | -        |
| 0.1122     | 5300      | 0.3564        | -        |
| 0.1143     | 5400      | 0.336         | -        |
| 0.1164     | 5500      | 0.3601        | -        |
| 0.1185     | 5600      | 0.3521        | -        |
| 0.1206     | 5700      | 0.376         | -        |
| 0.1227     | 5800      | 0.3011        | -        |
| 0.1249     | 5900      | 0.345         | -        |
| 0.1270     | 6000      | 0.3211        | -        |
| 0.1291     | 6100      | 0.3673        | -        |
| 0.1312     | 6200      | 0.3762        | -        |
| 0.1333     | 6300      | 0.3562        | -        |
| 0.1354     | 6400      | 0.2761        | -        |
| 0.1376     | 6500      | 0.3186        | -        |
| 0.1397     | 6600      | 0.3582        | -        |
| 0.1418     | 6700      | 0.3454        | -        |
| 0.1439     | 6800      | 0.3429        | -        |
| 0.1460     | 6900      | 0.2932        | -        |
| 0.1481     | 7000      | 0.3357        | -        |
| 0.1503     | 7100      | 0.2979        | -        |
| 0.1524     | 7200      | 0.313         | -        |
| 0.1545     | 7300      | 0.3364        | -        |
| 0.1566     | 7400      | 0.3459        | -        |
| 0.1587     | 7500      | 0.279         | -        |
| 0.1608     | 7600      | 0.3274        | -        |
| 0.1629     | 7700      | 0.3367        | -        |
| 0.1651     | 7800      | 0.2935        | -        |
| 0.1672     | 7900      | 0.3415        | -        |
| 0.1693     | 8000      | 0.2838        | -        |
| 0.1714     | 8100      | 0.2667        | -        |
| 0.1735     | 8200      | 0.3051        | -        |
| 0.1756     | 8300      | 0.3197        | -        |
| 0.1778     | 8400      | 0.3086        | -        |
| 0.1799     | 8500      | 0.3186        | -        |
| 0.1820     | 8600      | 0.3063        | -        |
| 0.1841     | 8700      | 0.2967        | -        |
| 0.1862     | 8800      | 0.3069        | -        |
| 0.1883     | 8900      | 0.3391        | -        |
| 0.1905     | 9000      | 0.335         | -        |
| 0.1926     | 9100      | 0.3115        | -        |
| 0.1947     | 9200      | 0.3214        | -        |
| 0.1968     | 9300      | 0.278         | -        |
| 0.1989     | 9400      | 0.2833        | -        |
| 0.2010     | 9500      | 0.303         | -        |
| 0.2032     | 9600      | 0.3238        | -        |
| 0.2053     | 9700      | 0.2622        | -        |
| 0.2074     | 9800      | 0.3295        | -        |
| 0.2095     | 9900      | 0.2699        | -        |
| 0.2116     | 10000     | 0.2426        | 0.2962   |
| 0.2137     | 10100     | 0.262         | -        |
| 0.2159     | 10200     | 0.3199        | -        |
| 0.2180     | 10300     | 0.3677        | -        |
| 0.2201     | 10400     | 0.2423        | -        |
| 0.2222     | 10500     | 0.3446        | -        |
| 0.2243     | 10600     | 0.3002        | -        |
| 0.2264     | 10700     | 0.2863        | -        |
| 0.2286     | 10800     | 0.2692        | -        |
| 0.2307     | 10900     | 0.3157        | -        |
| 0.2328     | 11000     | 0.3172        | -        |
| 0.2349     | 11100     | 0.3622        | -        |
| 0.2370     | 11200     | 0.3019        | -        |
| 0.2391     | 11300     | 0.2789        | -        |
| 0.2412     | 11400     | 0.2872        | -        |
| 0.2434     | 11500     | 0.2823        | -        |
| 0.2455     | 11600     | 0.3017        | -        |
| 0.2476     | 11700     | 0.2573        | -        |
| 0.2497     | 11800     | 0.3104        | -        |
| 0.2518     | 11900     | 0.2857        | -        |
| 0.2539     | 12000     | 0.2898        | -        |
| 0.2561     | 12100     | 0.2389        | -        |
| 0.2582     | 12200     | 0.3137        | -        |
| 0.2603     | 12300     | 0.3029        | -        |
| 0.2624     | 12400     | 0.2894        | -        |
| 0.2645     | 12500     | 0.2665        | -        |
| 0.2666     | 12600     | 0.2705        | -        |
| 0.2688     | 12700     | 0.2673        | -        |
| 0.2709     | 12800     | 0.248         | -        |
| 0.2730     | 12900     | 0.2417        | -        |
| 0.2751     | 13000     | 0.2852        | -        |
| 0.2772     | 13100     | 0.2619        | -        |
| 0.2793     | 13200     | 0.3157        | -        |
| 0.2815     | 13300     | 0.2464        | -        |
| 0.2836     | 13400     | 0.2837        | -        |
| 0.2857     | 13500     | 0.3202        | -        |
| 0.2878     | 13600     | 0.2618        | -        |
| 0.2899     | 13700     | 0.2823        | -        |
| 0.2920     | 13800     | 0.2634        | -        |
| 0.2942     | 13900     | 0.2747        | -        |
| 0.2963     | 14000     | 0.2835        | -        |
| 0.2984     | 14100     | 0.2594        | -        |
| 0.3005     | 14200     | 0.2744        | -        |
| 0.3026     | 14300     | 0.2722        | -        |
| 0.3047     | 14400     | 0.2514        | -        |
| 0.3069     | 14500     | 0.2809        | -        |
| 0.3090     | 14600     | 0.2949        | -        |
| 0.3111     | 14700     | 0.2687        | -        |
| 0.3132     | 14800     | 0.3           | -        |
| 0.3153     | 14900     | 0.2684        | -        |
| 0.3174     | 15000     | 0.2894        | 0.2790   |
| 0.3195     | 15100     | 0.2676        | -        |
| 0.3217     | 15200     | 0.2519        | -        |
| 0.3238     | 15300     | 0.2698        | -        |
| 0.3259     | 15400     | 0.2898        | -        |
| 0.3280     | 15500     | 0.2359        | -        |
| 0.3301     | 15600     | 0.2866        | -        |
| 0.3322     | 15700     | 0.3098        | -        |
| 0.3344     | 15800     | 0.2809        | -        |
| 0.3365     | 15900     | 0.3081        | -        |
| 0.3386     | 16000     | 0.266         | -        |
| 0.3407     | 16100     | 0.2523        | -        |
| 0.3428     | 16200     | 0.3215        | -        |
| 0.3449     | 16300     | 0.2883        | -        |
| 0.3471     | 16400     | 0.2897        | -        |
| 0.3492     | 16500     | 0.3174        | -        |
| 0.3513     | 16600     | 0.2878        | -        |
| 0.3534     | 16700     | 0.267         | -        |
| 0.3555     | 16800     | 0.2452        | -        |
| 0.3576     | 16900     | 0.2429        | -        |
| 0.3598     | 17000     | 0.2178        | -        |
| 0.3619     | 17100     | 0.2798        | -        |
| 0.3640     | 17200     | 0.2367        | -        |
| 0.3661     | 17300     | 0.2554        | -        |
| 0.3682     | 17400     | 0.2883        | -        |
| 0.3703     | 17500     | 0.2567        | -        |
| 0.3725     | 17600     | 0.27          | -        |
| 0.3746     | 17700     | 0.2837        | -        |
| 0.3767     | 17800     | 0.2783        | -        |
| 0.3788     | 17900     | 0.2517        | -        |
| 0.3809     | 18000     | 0.2545        | -        |
| 0.3830     | 18100     | 0.2632        | -        |
| 0.3852     | 18200     | 0.2074        | -        |
| 0.3873     | 18300     | 0.2276        | -        |
| 0.3894     | 18400     | 0.3022        | -        |
| 0.3915     | 18500     | 0.2381        | -        |
| 0.3936     | 18600     | 0.2552        | -        |
| 0.3957     | 18700     | 0.2579        | -        |
| 0.3978     | 18800     | 0.2655        | -        |
| 0.4000     | 18900     | 0.252         | -        |
| 0.4021     | 19000     | 0.2876        | -        |
| 0.4042     | 19100     | 0.2037        | -        |
| 0.4063     | 19200     | 0.251         | -        |
| 0.4084     | 19300     | 0.2588        | -        |
| 0.4105     | 19400     | 0.201         | -        |
| 0.4127     | 19500     | 0.2828        | -        |
| 0.4148     | 19600     | 0.2637        | -        |
| 0.4169     | 19700     | 0.3233        | -        |
| 0.4190     | 19800     | 0.2475        | -        |
| 0.4211     | 19900     | 0.2618        | -        |
| 0.4232     | 20000     | 0.3272        | 0.2519   |
| 0.4254     | 20100     | 0.3074        | -        |
| 0.4275     | 20200     | 0.2994        | -        |
| 0.4296     | 20300     | 0.2624        | -        |
| 0.4317     | 20400     | 0.2389        | -        |
| 0.4338     | 20500     | 0.2809        | -        |
| 0.4359     | 20600     | 0.2659        | -        |
| 0.4381     | 20700     | 0.2508        | -        |
| 0.4402     | 20800     | 0.2542        | -        |
| 0.4423     | 20900     | 0.2525        | -        |
| 0.4444     | 21000     | 0.257         | -        |
| 0.4465     | 21100     | 0.2242        | -        |
| 0.4486     | 21200     | 0.2307        | -        |
| 0.4508     | 21300     | 0.2721        | -        |
| 0.4529     | 21400     | 0.2489        | -        |
| 0.4550     | 21500     | 0.2933        | -        |
| 0.4571     | 21600     | 0.2448        | -        |
| 0.4592     | 21700     | 0.2619        | -        |
| 0.4613     | 21800     | 0.2488        | -        |
| 0.4635     | 21900     | 0.2411        | -        |
| 0.4656     | 22000     | 0.2964        | -        |
| 0.4677     | 22100     | 0.2062        | -        |
| 0.4698     | 22200     | 0.2665        | -        |
| 0.4719     | 22300     | 0.263         | -        |
| 0.4740     | 22400     | 0.2418        | -        |
| 0.4762     | 22500     | 0.2879        | -        |
| 0.4783     | 22600     | 0.2406        | -        |
| 0.4804     | 22700     | 0.2448        | -        |
| 0.4825     | 22800     | 0.243         | -        |
| 0.4846     | 22900     | 0.2863        | -        |
| 0.4867     | 23000     | 0.2833        | -        |
| 0.4888     | 23100     | 0.2784        | -        |
| 0.4910     | 23200     | 0.2789        | -        |
| 0.4931     | 23300     | 0.2495        | -        |
| 0.4952     | 23400     | 0.2872        | -        |
| 0.4973     | 23500     | 0.2487        | -        |
| 0.4994     | 23600     | 0.2669        | -        |
| 0.5015     | 23700     | 0.2748        | -        |
| 0.5037     | 23800     | 0.246         | -        |
| 0.5058     | 23900     | 0.2512        | -        |
| 0.5079     | 24000     | 0.222         | -        |
| 0.5100     | 24100     | 0.2662        | -        |
| 0.5121     | 24200     | 0.2238        | -        |
| 0.5142     | 24300     | 0.2399        | -        |
| 0.5164     | 24400     | 0.2595        | -        |
| 0.5185     | 24500     | 0.3002        | -        |
| 0.5206     | 24600     | 0.2553        | -        |
| 0.5227     | 24700     | 0.226         | -        |
| 0.5248     | 24800     | 0.2823        | -        |
| 0.5269     | 24900     | 0.2737        | -        |
| 0.5291     | 25000     | 0.2237        | 0.2492   |
| 0.5312     | 25100     | 0.2642        | -        |
| 0.5333     | 25200     | 0.2486        | -        |
| 0.5354     | 25300     | 0.2527        | -        |
| 0.5375     | 25400     | 0.2363        | -        |
| 0.5396     | 25500     | 0.2443        | -        |
| 0.5418     | 25600     | 0.2485        | -        |
| 0.5439     | 25700     | 0.2434        | -        |
| 0.5460     | 25800     | 0.2631        | -        |
| 0.5481     | 25900     | 0.284         | -        |
| 0.5502     | 26000     | 0.217         | -        |
| 0.5523     | 26100     | 0.2246        | -        |
| 0.5545     | 26200     | 0.2614        | -        |
| 0.5566     | 26300     | 0.2722        | -        |
| 0.5587     | 26400     | 0.2114        | -        |
| 0.5608     | 26500     | 0.2623        | -        |
| 0.5629     | 26600     | 0.2475        | -        |
| 0.5650     | 26700     | 0.2449        | -        |
| 0.5671     | 26800     | 0.2423        | -        |
| 0.5693     | 26900     | 0.2435        | -        |
| 0.5714     | 27000     | 0.2446        | -        |
| 0.5735     | 27100     | 0.2248        | -        |
| 0.5756     | 27200     | 0.2159        | -        |
| 0.5777     | 27300     | 0.2415        | -        |
| 0.5798     | 27400     | 0.2257        | -        |
| 0.5820     | 27500     | 0.2775        | -        |
| 0.5841     | 27600     | 0.2533        | -        |
| 0.5862     | 27700     | 0.2893        | -        |
| 0.5883     | 27800     | 0.2095        | -        |
| 0.5904     | 27900     | 0.2156        | -        |
| 0.5925     | 28000     | 0.2315        | -        |
| 0.5947     | 28100     | 0.2865        | -        |
| 0.5968     | 28200     | 0.262         | -        |
| 0.5989     | 28300     | 0.2506        | -        |
| 0.6010     | 28400     | 0.2472        | -        |
| 0.6031     | 28500     | 0.2395        | -        |
| 0.6052     | 28600     | 0.2269        | -        |
| 0.6074     | 28700     | 0.2639        | -        |
| 0.6095     | 28800     | 0.2674        | -        |
| 0.6116     | 28900     | 0.2521        | -        |
| 0.6137     | 29000     | 0.2553        | -        |
| 0.6158     | 29100     | 0.2526        | -        |
| 0.6179     | 29200     | 0.231         | -        |
| 0.6201     | 29300     | 0.2622        | -        |
| 0.6222     | 29400     | 0.237         | -        |
| 0.6243     | 29500     | 0.2475        | -        |
| 0.6264     | 29600     | 0.2435        | -        |
| 0.6285     | 29700     | 0.2109        | -        |
| 0.6306     | 29800     | 0.2376        | -        |
| 0.6328     | 29900     | 0.2202        | -        |
| 0.6349     | 30000     | 0.2147        | 0.2370   |
| 0.6370     | 30100     | 0.2306        | -        |
| 0.6391     | 30200     | 0.2249        | -        |
| 0.6412     | 30300     | 0.3027        | -        |
| 0.6433     | 30400     | 0.2115        | -        |
| 0.6454     | 30500     | 0.2597        | -        |
| 0.6476     | 30600     | 0.2483        | -        |
| 0.6497     | 30700     | 0.2719        | -        |
| 0.6518     | 30800     | 0.2162        | -        |
| 0.6539     | 30900     | 0.2947        | -        |
| 0.6560     | 31000     | 0.2144        | -        |
| 0.6581     | 31100     | 0.2391        | -        |
| 0.6603     | 31200     | 0.2572        | -        |
| 0.6624     | 31300     | 0.1977        | -        |
| 0.6645     | 31400     | 0.2678        | -        |
| 0.6666     | 31500     | 0.2353        | -        |
| 0.6687     | 31600     | 0.1911        | -        |
| 0.6708     | 31700     | 0.2844        | -        |
| 0.6730     | 31800     | 0.2689        | -        |
| 0.6751     | 31900     | 0.2491        | -        |
| 0.6772     | 32000     | 0.2259        | -        |
| 0.6793     | 32100     | 0.2248        | -        |
| 0.6814     | 32200     | 0.2462        | -        |
| 0.6835     | 32300     | 0.2135        | -        |
| 0.6857     | 32400     | 0.2085        | -        |
| 0.6878     | 32500     | 0.227         | -        |
| 0.6899     | 32600     | 0.2488        | -        |
| 0.6920     | 32700     | 0.2614        | -        |
| 0.6941     | 32800     | 0.2274        | -        |
| 0.6962     | 32900     | 0.2389        | -        |
| 0.6984     | 33000     | 0.2573        | -        |
| 0.7005     | 33100     | 0.245         | -        |
| 0.7026     | 33200     | 0.21          | -        |
| 0.7047     | 33300     | 0.2196        | -        |
| 0.7068     | 33400     | 0.2218        | -        |
| 0.7089     | 33500     | 0.2092        | -        |
| 0.7111     | 33600     | 0.2526        | -        |
| 0.7132     | 33700     | 0.2275        | -        |
| 0.7153     | 33800     | 0.2622        | -        |
| 0.7174     | 33900     | 0.2469        | -        |
| 0.7195     | 34000     | 0.2157        | -        |
| 0.7216     | 34100     | 0.2326        | -        |
| 0.7237     | 34200     | 0.268         | -        |
| 0.7259     | 34300     | 0.2628        | -        |
| 0.7280     | 34400     | 0.2503        | -        |
| 0.7301     | 34500     | 0.2101        | -        |
| 0.7322     | 34600     | 0.237         | -        |
| 0.7343     | 34700     | 0.233         | -        |
| 0.7364     | 34800     | 0.2077        | -        |
| 0.7386     | 34900     | 0.259         | -        |
| 0.7407     | 35000     | 0.2312        | 0.2284   |
| 0.7428     | 35100     | 0.287         | -        |
| 0.7449     | 35200     | 0.2278        | -        |
| 0.7470     | 35300     | 0.2618        | -        |
| 0.7491     | 35400     | 0.2298        | -        |
| 0.7513     | 35500     | 0.195         | -        |
| 0.7534     | 35600     | 0.2248        | -        |
| 0.7555     | 35700     | 0.2234        | -        |
| 0.7576     | 35800     | 0.2218        | -        |
| 0.7597     | 35900     | 0.2002        | -        |
| 0.7618     | 36000     | 0.2158        | -        |
| 0.7640     | 36100     | 0.1919        | -        |
| 0.7661     | 36200     | 0.2972        | -        |
| 0.7682     | 36300     | 0.2665        | -        |
| 0.7703     | 36400     | 0.2114        | -        |
| 0.7724     | 36500     | 0.1879        | -        |
| 0.7745     | 36600     | 0.2137        | -        |
| 0.7767     | 36700     | 0.2847        | -        |
| 0.7788     | 36800     | 0.2372        | -        |
| 0.7809     | 36900     | 0.2058        | -        |
| 0.7830     | 37000     | 0.2205        | -        |
| 0.7851     | 37100     | 0.2012        | -        |
| 0.7872     | 37200     | 0.2057        | -        |
| 0.7894     | 37300     | 0.1932        | -        |
| 0.7915     | 37400     | 0.2261        | -        |
| 0.7936     | 37500     | 0.2633        | -        |
| 0.7957     | 37600     | 0.1558        | -        |
| 0.7978     | 37700     | 0.2064        | -        |
| 0.7999     | 37800     | 0.2166        | -        |
| 0.8020     | 37900     | 0.2249        | -        |
| 0.8042     | 38000     | 0.2626        | -        |
| 0.8063     | 38100     | 0.1945        | -        |
| 0.8084     | 38200     | 0.2611        | -        |
| 0.8105     | 38300     | 0.199         | -        |
| 0.8126     | 38400     | 0.2004        | -        |
| 0.8147     | 38500     | 0.2506        | -        |
| 0.8169     | 38600     | 0.1722        | -        |
| 0.8190     | 38700     | 0.1959        | -        |
| 0.8211     | 38800     | 0.2505        | -        |
| 0.8232     | 38900     | 0.2343        | -        |
| 0.8253     | 39000     | 0.2353        | -        |
| 0.8274     | 39100     | 0.22          | -        |
| 0.8296     | 39200     | 0.2089        | -        |
| 0.8317     | 39300     | 0.2416        | -        |
| 0.8338     | 39400     | 0.1916        | -        |
| 0.8359     | 39500     | 0.2387        | -        |
| 0.8380     | 39600     | 0.2475        | -        |
| 0.8401     | 39700     | 0.2189        | -        |
| 0.8423     | 39800     | 0.2141        | -        |
| 0.8444     | 39900     | 0.2008        | -        |
| 0.8465     | 40000     | 0.2489        | 0.2253   |
| 0.8486     | 40100     | 0.2258        | -        |
| 0.8507     | 40200     | 0.2341        | -        |
| 0.8528     | 40300     | 0.2377        | -        |
| 0.8550     | 40400     | 0.194         | -        |
| 0.8571     | 40500     | 0.2144        | -        |
| 0.8592     | 40600     | 0.2605        | -        |
| 0.8613     | 40700     | 0.2517        | -        |
| 0.8634     | 40800     | 0.2044        | -        |
| 0.8655     | 40900     | 0.2259        | -        |
| 0.8677     | 41000     | 0.2141        | -        |
| 0.8698     | 41100     | 0.1895        | -        |
| 0.8719     | 41200     | 0.2361        | -        |
| 0.8740     | 41300     | 0.1978        | -        |
| 0.8761     | 41400     | 0.2089        | -        |
| 0.8782     | 41500     | 0.2258        | -        |
| 0.8803     | 41600     | 0.2368        | -        |
| 0.8825     | 41700     | 0.2473        | -        |
| 0.8846     | 41800     | 0.2185        | -        |
| 0.8867     | 41900     | 0.212         | -        |
| 0.8888     | 42000     | 0.2469        | -        |
| 0.8909     | 42100     | 0.1817        | -        |
| 0.8930     | 42200     | 0.1884        | -        |
| 0.8952     | 42300     | 0.207         | -        |
| 0.8973     | 42400     | 0.2422        | -        |
| 0.8994     | 42500     | 0.2606        | -        |
| 0.9015     | 42600     | 0.2266        | -        |
| 0.9036     | 42700     | 0.2103        | -        |
| 0.9057     | 42800     | 0.2712        | -        |
| 0.9079     | 42900     | 0.1944        | -        |
| 0.9100     | 43000     | 0.2003        | -        |
| 0.9121     | 43100     | 0.1991        | -        |
| 0.9142     | 43200     | 0.2129        | -        |
| 0.9163     | 43300     | 0.2465        | -        |
| 0.9184     | 43400     | 0.1764        | -        |
| 0.9206     | 43500     | 0.2365        | -        |
| 0.9227     | 43600     | 0.2054        | -        |
| 0.9248     | 43700     | 0.2551        | -        |
| 0.9269     | 43800     | 0.2322        | -        |
| 0.9290     | 43900     | 0.2213        | -        |
| 0.9311     | 44000     | 0.1962        | -        |
| 0.9333     | 44100     | 0.1988        | -        |
| 0.9354     | 44200     | 0.1982        | -        |
| 0.9375     | 44300     | 0.2193        | -        |
| 0.9396     | 44400     | 0.2378        | -        |
| 0.9417     | 44500     | 0.2244        | -        |
| 0.9438     | 44600     | 0.2296        | -        |
| 0.9460     | 44700     | 0.2446        | -        |
| 0.9481     | 44800     | 0.2206        | -        |
| 0.9502     | 44900     | 0.1815        | -        |
| **0.9523** | **45000** | **0.2385**    | **0.22** |
| 0.9544     | 45100     | 0.2106        | -        |
| 0.9565     | 45200     | 0.1929        | -        |
| 0.9586     | 45300     | 0.181         | -        |
| 0.9608     | 45400     | 0.1908        | -        |
| 0.9629     | 45500     | 0.1926        | -        |
| 0.9650     | 45600     | 0.1922        | -        |
| 0.9671     | 45700     | 0.2003        | -        |
| 0.9692     | 45800     | 0.2377        | -        |
| 0.9713     | 45900     | 0.2069        | -        |
| 0.9735     | 46000     | 0.2024        | -        |
| 0.9756     | 46100     | 0.1795        | -        |
| 0.9777     | 46200     | 0.2372        | -        |
| 0.9798     | 46300     | 0.2135        | -        |
| 0.9819     | 46400     | 0.2396        | -        |
| 0.9840     | 46500     | 0.2295        | -        |
| 0.9862     | 46600     | 0.2235        | -        |
| 0.9883     | 46700     | 0.2427        | -        |
| 0.9904     | 46800     | 0.2145        | -        |
| 0.9925     | 46900     | 0.2231        | -        |
| 0.9946     | 47000     | 0.2401        | -        |
| 0.9967     | 47100     | 0.1764        | -        |
| 0.9989     | 47200     | 0.1943        | -        |

* The bold row denotes the saved checkpoint.
</details>

### Framework Versions
- Python: 3.12.4
- Sentence Transformers: 3.1.0.dev0
- Transformers: 4.42.4
- PyTorch: 2.3.1+cpu
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/1908.10084",

}

```

#### MultipleNegativesRankingLoss
```bibtex

@misc{henderson2017efficient,

    title={Efficient Natural Language Response Suggestion for Smart Reply},

    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},

    year={2017},

    eprint={1705.00652},

    archivePrefix={arXiv},

    primaryClass={cs.CL}

}

```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->