--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: emotion_face_image_classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.55 --- # emotion_face_image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2110 - Accuracy: 0.55 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0717 | 1.0 | 10 | 2.0593 | 0.2062 | | 2.005 | 2.0 | 20 | 1.9999 | 0.2625 | | 1.9169 | 3.0 | 30 | 1.8931 | 0.35 | | 1.7635 | 4.0 | 40 | 1.7616 | 0.4062 | | 1.6614 | 5.0 | 50 | 1.6452 | 0.4562 | | 1.6182 | 6.0 | 60 | 1.5661 | 0.4125 | | 1.5434 | 7.0 | 70 | 1.5183 | 0.4125 | | 1.46 | 8.0 | 80 | 1.4781 | 0.4875 | | 1.4564 | 9.0 | 90 | 1.3939 | 0.5125 | | 1.2966 | 10.0 | 100 | 1.3800 | 0.4562 | | 1.3732 | 11.0 | 110 | 1.3557 | 0.475 | | 1.2907 | 12.0 | 120 | 1.3473 | 0.5 | | 1.2875 | 13.0 | 130 | 1.3416 | 0.5312 | | 1.2743 | 14.0 | 140 | 1.2964 | 0.4875 | | 1.1249 | 15.0 | 150 | 1.2385 | 0.525 | | 1.0963 | 16.0 | 160 | 1.2775 | 0.5062 | | 1.0261 | 17.0 | 170 | 1.2751 | 0.5125 | | 0.9298 | 18.0 | 180 | 1.2318 | 0.525 | | 1.0668 | 19.0 | 190 | 1.2520 | 0.5437 | | 0.9933 | 20.0 | 200 | 1.2512 | 0.525 | | 1.1069 | 21.0 | 210 | 1.3016 | 0.5 | | 1.0279 | 22.0 | 220 | 1.3279 | 0.475 | | 0.967 | 23.0 | 230 | 1.2481 | 0.5 | | 0.8115 | 24.0 | 240 | 1.1791 | 0.5563 | | 0.7912 | 25.0 | 250 | 1.2336 | 0.55 | | 0.9294 | 26.0 | 260 | 1.1759 | 0.5813 | | 0.8936 | 27.0 | 270 | 1.1685 | 0.6 | | 0.7706 | 28.0 | 280 | 1.2403 | 0.5312 | | 0.7694 | 29.0 | 290 | 1.2479 | 0.5687 | | 0.7265 | 30.0 | 300 | 1.2000 | 0.5625 | | 0.6781 | 31.0 | 310 | 1.1856 | 0.55 | | 0.6676 | 32.0 | 320 | 1.2661 | 0.5437 | | 0.7254 | 33.0 | 330 | 1.1986 | 0.5437 | | 0.7396 | 34.0 | 340 | 1.1497 | 0.575 | | 0.5532 | 35.0 | 350 | 1.2796 | 0.5062 | | 0.622 | 36.0 | 360 | 1.2749 | 0.5125 | | 0.6958 | 37.0 | 370 | 1.2034 | 0.5687 | | 0.6102 | 38.0 | 380 | 1.2576 | 0.5188 | | 0.6161 | 39.0 | 390 | 1.2635 | 0.5062 | | 0.6927 | 40.0 | 400 | 1.1535 | 0.5437 | | 0.549 | 41.0 | 410 | 1.1405 | 0.6 | | 0.6668 | 42.0 | 420 | 1.2683 | 0.5312 | | 0.5144 | 43.0 | 430 | 1.2249 | 0.6 | | 0.6703 | 44.0 | 440 | 1.2297 | 0.5687 | | 0.6383 | 45.0 | 450 | 1.1507 | 0.6062 | | 0.5211 | 46.0 | 460 | 1.2914 | 0.4813 | | 0.4743 | 47.0 | 470 | 1.2782 | 0.5125 | | 0.553 | 48.0 | 480 | 1.2256 | 0.5375 | | 0.6407 | 49.0 | 490 | 1.2149 | 0.5687 | | 0.4195 | 50.0 | 500 | 1.2024 | 0.5625 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3