RichardErkhov commited on
Commit
69edeb4
·
verified ·
1 Parent(s): b61964b

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +198 -0
README.md ADDED
@@ -0,0 +1,198 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ Mistral-7B-ReMax-v0.1 - GGUF
11
+ - Model creator: https://huggingface.co/ziniuli/
12
+ - Original model: https://huggingface.co/ziniuli/Mistral-7B-ReMax-v0.1/
13
+
14
+
15
+ | Name | Quant method | Size |
16
+ | ---- | ---- | ---- |
17
+ | [Mistral-7B-ReMax-v0.1.Q2_K.gguf](https://huggingface.co/RichardErkhov/ziniuli_-_Mistral-7B-ReMax-v0.1-gguf/blob/main/Mistral-7B-ReMax-v0.1.Q2_K.gguf) | Q2_K | 2.53GB |
18
+ | [Mistral-7B-ReMax-v0.1.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/ziniuli_-_Mistral-7B-ReMax-v0.1-gguf/blob/main/Mistral-7B-ReMax-v0.1.IQ3_XS.gguf) | IQ3_XS | 2.81GB |
19
+ | [Mistral-7B-ReMax-v0.1.IQ3_S.gguf](https://huggingface.co/RichardErkhov/ziniuli_-_Mistral-7B-ReMax-v0.1-gguf/blob/main/Mistral-7B-ReMax-v0.1.IQ3_S.gguf) | IQ3_S | 2.96GB |
20
+ | [Mistral-7B-ReMax-v0.1.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/ziniuli_-_Mistral-7B-ReMax-v0.1-gguf/blob/main/Mistral-7B-ReMax-v0.1.Q3_K_S.gguf) | Q3_K_S | 2.95GB |
21
+ | [Mistral-7B-ReMax-v0.1.IQ3_M.gguf](https://huggingface.co/RichardErkhov/ziniuli_-_Mistral-7B-ReMax-v0.1-gguf/blob/main/Mistral-7B-ReMax-v0.1.IQ3_M.gguf) | IQ3_M | 3.06GB |
22
+ | [Mistral-7B-ReMax-v0.1.Q3_K.gguf](https://huggingface.co/RichardErkhov/ziniuli_-_Mistral-7B-ReMax-v0.1-gguf/blob/main/Mistral-7B-ReMax-v0.1.Q3_K.gguf) | Q3_K | 3.28GB |
23
+ | [Mistral-7B-ReMax-v0.1.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/ziniuli_-_Mistral-7B-ReMax-v0.1-gguf/blob/main/Mistral-7B-ReMax-v0.1.Q3_K_M.gguf) | Q3_K_M | 3.28GB |
24
+ | [Mistral-7B-ReMax-v0.1.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/ziniuli_-_Mistral-7B-ReMax-v0.1-gguf/blob/main/Mistral-7B-ReMax-v0.1.Q3_K_L.gguf) | Q3_K_L | 3.56GB |
25
+ | [Mistral-7B-ReMax-v0.1.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/ziniuli_-_Mistral-7B-ReMax-v0.1-gguf/blob/main/Mistral-7B-ReMax-v0.1.IQ4_XS.gguf) | IQ4_XS | 3.67GB |
26
+ | [Mistral-7B-ReMax-v0.1.Q4_0.gguf](https://huggingface.co/RichardErkhov/ziniuli_-_Mistral-7B-ReMax-v0.1-gguf/blob/main/Mistral-7B-ReMax-v0.1.Q4_0.gguf) | Q4_0 | 3.83GB |
27
+ | [Mistral-7B-ReMax-v0.1.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/ziniuli_-_Mistral-7B-ReMax-v0.1-gguf/blob/main/Mistral-7B-ReMax-v0.1.IQ4_NL.gguf) | IQ4_NL | 3.87GB |
28
+ | [Mistral-7B-ReMax-v0.1.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/ziniuli_-_Mistral-7B-ReMax-v0.1-gguf/blob/main/Mistral-7B-ReMax-v0.1.Q4_K_S.gguf) | Q4_K_S | 3.86GB |
29
+ | [Mistral-7B-ReMax-v0.1.Q4_K.gguf](https://huggingface.co/RichardErkhov/ziniuli_-_Mistral-7B-ReMax-v0.1-gguf/blob/main/Mistral-7B-ReMax-v0.1.Q4_K.gguf) | Q4_K | 4.07GB |
30
+ | [Mistral-7B-ReMax-v0.1.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/ziniuli_-_Mistral-7B-ReMax-v0.1-gguf/blob/main/Mistral-7B-ReMax-v0.1.Q4_K_M.gguf) | Q4_K_M | 4.07GB |
31
+ | [Mistral-7B-ReMax-v0.1.Q4_1.gguf](https://huggingface.co/RichardErkhov/ziniuli_-_Mistral-7B-ReMax-v0.1-gguf/blob/main/Mistral-7B-ReMax-v0.1.Q4_1.gguf) | Q4_1 | 4.24GB |
32
+ | [Mistral-7B-ReMax-v0.1.Q5_0.gguf](https://huggingface.co/RichardErkhov/ziniuli_-_Mistral-7B-ReMax-v0.1-gguf/blob/main/Mistral-7B-ReMax-v0.1.Q5_0.gguf) | Q5_0 | 4.65GB |
33
+ | [Mistral-7B-ReMax-v0.1.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/ziniuli_-_Mistral-7B-ReMax-v0.1-gguf/blob/main/Mistral-7B-ReMax-v0.1.Q5_K_S.gguf) | Q5_K_S | 4.65GB |
34
+ | [Mistral-7B-ReMax-v0.1.Q5_K.gguf](https://huggingface.co/RichardErkhov/ziniuli_-_Mistral-7B-ReMax-v0.1-gguf/blob/main/Mistral-7B-ReMax-v0.1.Q5_K.gguf) | Q5_K | 4.78GB |
35
+ | [Mistral-7B-ReMax-v0.1.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/ziniuli_-_Mistral-7B-ReMax-v0.1-gguf/blob/main/Mistral-7B-ReMax-v0.1.Q5_K_M.gguf) | Q5_K_M | 4.78GB |
36
+ | [Mistral-7B-ReMax-v0.1.Q5_1.gguf](https://huggingface.co/RichardErkhov/ziniuli_-_Mistral-7B-ReMax-v0.1-gguf/blob/main/Mistral-7B-ReMax-v0.1.Q5_1.gguf) | Q5_1 | 5.07GB |
37
+ | [Mistral-7B-ReMax-v0.1.Q6_K.gguf](https://huggingface.co/RichardErkhov/ziniuli_-_Mistral-7B-ReMax-v0.1-gguf/blob/main/Mistral-7B-ReMax-v0.1.Q6_K.gguf) | Q6_K | 5.53GB |
38
+ | [Mistral-7B-ReMax-v0.1.Q8_0.gguf](https://huggingface.co/RichardErkhov/ziniuli_-_Mistral-7B-ReMax-v0.1-gguf/blob/main/Mistral-7B-ReMax-v0.1.Q8_0.gguf) | Q8_0 | 7.17GB |
39
+
40
+
41
+
42
+
43
+ Original model description:
44
+ ---
45
+ language:
46
+ - en
47
+ license: apache-2.0
48
+ library_name: transformers
49
+
50
+ ---
51
+
52
+ # Model Card for Mistral-7B-ReMax-v0.1
53
+
54
+
55
+ The Mistral-7B-ReMax-v0.1 Large Language Model (LLM) is a Reinforcement Learning from Human Preference (RLHF) fine-tuned version of [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2).
56
+
57
+ The fine-tuning algorithm is ReMax and please find algorithm details in the [paper](https://arxiv.org/abs/2310.10505).
58
+
59
+ ## Model Details
60
+
61
+ - Developed by: Ziniu Li
62
+ - License: apache-2.0
63
+ - Finetuned from [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
64
+
65
+ ## Uses
66
+
67
+ ### Direct Use
68
+
69
+ The instruction format is the same as Mistral-7B-Instruct-v0.2. Specifically, the prompt should be surrounded by \[INST\] and \[/INST\] tokens.
70
+
71
+ ```
72
+ text = "<s>[INST] What is your favourite condiment? [/INST]"
73
+ "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> "
74
+ "[INST] Do you have mayonnaise recipes? [/INST]"
75
+ ```
76
+
77
+
78
+ ## Training Details
79
+
80
+ ### Training Data
81
+
82
+ 10k prompts from the [lmsys-chat-1m](https://huggingface.co/datasets/lmsys/lmsys-chat-1m) dataset. Note that no responses from this dataset are used in training.
83
+
84
+ ### Reward Model
85
+
86
+ The reward model is based on [UltraRM-13b](https://huggingface.co/openbmb/UltraRM-13b).
87
+
88
+ **Important**: UltraRM-13b uses a different instruction template with Mistral-7B. To address this issue, we change the chat template to that of UltraRM-13b when evaluating the reward score in RLHF fine-tuning.
89
+
90
+
91
+ ### Training Procedure
92
+
93
+ The training algorithm is ReMax, whose details are available in the [paper](https://arxiv.org/abs/2310.10505), and implementations are available in the [repository](https://github.com/liziniu/ReMax).
94
+
95
+
96
+ ### Training Hyperparameters
97
+
98
+ ```
99
+ max_prompt_seq: 384
100
+ max_answer_seq: 384
101
+ learning_rate: 5e-7
102
+ num_train_epochs: 1
103
+ kl_penalty: full_step
104
+ kl_ctl: 0.1
105
+ reward_clip_value: 1.0
106
+ temperature for sampling: 0.7
107
+ top_p for sampling: 0.9
108
+ ```
109
+
110
+
111
+ ## Evaluation
112
+
113
+
114
+ ### Chat1M
115
+
116
+
117
+ Since we fine-tune Mistral-7B-Instruct-v0.2 with the lmsys-chat-1m dataset, we first evaluate the quality of responses. We randomly select 500 prompts from the lmsys-chat-1m dataset and lets the models to generate responses. Then, we let GPT-4 to evaluate the binary win rate. The average win-rate of Mistral-7B-ReMax-v0.1 is 57.8%.
118
+
119
+ | | Mistral-7B-ReMax-v0.1 Wins | Mistral-7B-ReMax-v0.1 Wins |
120
+ | ------------------------ | -------------------------- | -------------------------- |
121
+ | Mistral-7B-Instruct-v0.2 | 289 | 211 |
122
+
123
+ Samples of responses are provided below.
124
+
125
+ ```
126
+ ==================Instruction================
127
+ 你好
128
+ ==================Mistral-7B-Instruct-v0.2================
129
+ 你好!我是一位帮助您解答问题的机器人。如果您有任何问题,请告诉我,我会尽力回答。
130
+
131
+ 你好(Hello)是中文语言中的一个常用词语,常用于问候或表示亲和,意思是“你好,你很好”。
132
+
133
+ 在我帮助您之前,我想先问一下,您是否知道什么是机器学习?机器学习是人工智能领域中的一种技术,它允许计算机自动学习和改进其行为,以便从数据中提取出有价值的信息,并使计算机能够做出更智能的决策。
134
+
135
+ 如果您已经熟悉机器学习,那么我可以帮助您深入探讨相关主题,如神经网络、支持向量机、决策树等。但是,如果您对机器学习不太熟悉,我可以简单地解释它的基本原理,以及它在现实生活中的应用。
136
+
137
+ 请告诉我您的需求,我会尽力满足您的期望。
138
+
139
+ 再次问候您:你好!
140
+ ==================Mistral-7B-ReMax-v0.1================
141
+ 好的,欢迎使用我的帮助!(Hello, welcome to use my help!)
142
+
143
+ 是的,我可以以中文回答你的问题,或者帮你完成一些简单的任务。(Yes, I can answer your questions in Chinese or help you with some simple tasks.)
144
+
145
+ 请问有什么特定的问题需要我帮忙呢?(What specific question do you need my help with?)
146
+
147
+ 或者,你可以告诉我什么方面我可以提供帮助。(Or you can tell me which area I can provide help in.)
148
+
149
+ 希望我能帮到你!(I hope I can help you!)
150
+ ```
151
+
152
+
153
+ ### AlpacaEval
154
+
155
+ [AlpacaEval](https://github.com/tatsu-lab/alpaca_eval) provides 805 test questions that the model has not been trained on. We provide the evaluation results below:
156
+
157
+ | | AlpacaEval | AlpacaEval 2 | Response Length |
158
+ | ------------------------ | ---------- | ------------ | --------------- |
159
+ | Mistral-7B-Instruct-v0.2 | 92.78 | 14.72 | 1676 |
160
+ | Mistral-7B-ReMax-v0.1 | 94.40 | 16.00 | 1478 |
161
+ | LLaMa2 Chat 7B | 71.37 | 4.96 | 1479 |
162
+ | LLaMa2 Chat 70B | 92.66 | 13.87 | 1790 |
163
+ | GPT-4 | 95.28 | 23.58 | 2049 |
164
+
165
+ Samples of responses are provided below
166
+
167
+ ```
168
+ ==================Instruction================
169
+ Marie is at the music store for a store day. She bought two $50 combos. Then, for $25 she bought two t-shirts for $5 each and five hoodies for $2 each. Then, she bought sneakers for $8 each. How much did she spend total?
170
+ ==================Mistral-7B-Instruct-v0.2================
171
+ Marie bought 2 combos at $50 each, so that's $100. She bought 2 t-shirts at $5 each, which is $10. She bought 5 hoodies at $2 each, which is $10. The sneakers cost $8. So Marie spent a total of $118. ($100 + $10 + $8 = $118)
172
+ ==================Mistral-7B-ReMax-v0.1================
173
+ Marie bought two combos at $50 each, so that's $100. She bought two t-shirts for $5 each, which totals $10. She bought five hoodies for $2 each, so that's $10. The sneakers cost $8.
174
+
175
+ So Marie spent $100 + $10 + $10 + $8 = $128 in total.
176
+ ```
177
+
178
+ ## Limitations
179
+
180
+ The Mistral-7B-ReMax-v0.1 model demonstrates that the optimization algorithm ReMax is effective. This model shares the same limitations as the Mistral-7B-Instruct-v0.2 model. In particular, it does not have any moderation mechanisms.
181
+
182
+ ## Citation
183
+
184
+
185
+ **BibTeX:**
186
+
187
+
188
+ ```
189
+ @article{li2023remax,
190
+ title={Remax: A simple, effective, and efficient method for aligning large language models},
191
+ author={Li, Ziniu and Xu, Tian and Zhang, Yushun and Yu, Yang and Sun, Ruoyu and Luo, Zhi-Quan},
192
+ journal={arXiv preprint arXiv:2310.10505},
193
+ year={2023}
194
+ }
195
+ ```
196
+
197
+
198
+