RichardErkhov commited on
Commit
a2fcdde
·
verified ·
1 Parent(s): ca63ee8

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +745 -0
README.md ADDED
@@ -0,0 +1,745 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ gemma-2-2b-it - AWQ
11
+ - Model creator: https://huggingface.co/google/
12
+ - Original model: https://huggingface.co/google/gemma-2-2b-it/
13
+
14
+
15
+
16
+
17
+ Original model description:
18
+ ---
19
+ license: gemma
20
+ library_name: transformers
21
+ pipeline_tag: text-generation
22
+ extra_gated_heading: Access Gemma on Hugging Face
23
+ extra_gated_prompt: >-
24
+ To access Gemma on Hugging Face, you’re required to review and agree to
25
+ Google’s usage license. To do this, please ensure you’re logged in to Hugging
26
+ Face and click below. Requests are processed immediately.
27
+ extra_gated_button_content: Acknowledge license
28
+ tags:
29
+ - conversational
30
+ base_model: google/gemma-2-2b
31
+ ---
32
+
33
+
34
+ # Gemma 2 model card
35
+
36
+ **Model Page**: [Gemma](https://ai.google.dev/gemma/docs/base)
37
+
38
+ **Resources and Technical Documentation**:
39
+
40
+ * [Responsible Generative AI Toolkit][rai-toolkit]
41
+ * [Gemma on Kaggle][kaggle-gemma]
42
+ * [Gemma on Vertex Model Garden][vertex-mg-gemma2]
43
+
44
+ **Terms of Use**: [Terms][terms]
45
+
46
+ **Authors**: Google
47
+
48
+ ## Model Information
49
+
50
+ Summary description and brief definition of inputs and outputs.
51
+
52
+ ### Description
53
+
54
+ Gemma is a family of lightweight, state-of-the-art open models from Google,
55
+ built from the same research and technology used to create the Gemini models.
56
+ They are text-to-text, decoder-only large language models, available in English,
57
+ with open weights for both pre-trained variants and instruction-tuned variants.
58
+ Gemma models are well-suited for a variety of text generation tasks, including
59
+ question answering, summarization, and reasoning. Their relatively small size
60
+ makes it possible to deploy them in environments with limited resources such as
61
+ a laptop, desktop or your own cloud infrastructure, democratizing access to
62
+ state of the art AI models and helping foster innovation for everyone.
63
+
64
+ ### Usage
65
+
66
+ Below we share some code snippets on how to get quickly started with running the model. First, install the Transformers library with:
67
+ ```sh
68
+ pip install -U transformers
69
+ ```
70
+
71
+ Then, copy the snippet from the section that is relevant for your usecase.
72
+
73
+ #### Running with the `pipeline` API
74
+
75
+ ```python
76
+ import torch
77
+ from transformers import pipeline
78
+
79
+ pipe = pipeline(
80
+ "text-generation",
81
+ model="google/gemma-2-2b-it",
82
+ model_kwargs={"torch_dtype": torch.bfloat16},
83
+ device="cuda", # replace with "mps" to run on a Mac device
84
+ )
85
+
86
+ messages = [
87
+ {"role": "user", "content": "Who are you? Please, answer in pirate-speak."},
88
+ ]
89
+
90
+ outputs = pipe(messages, max_new_tokens=256)
91
+ assistant_response = outputs[0]["generated_text"][-1]["content"].strip()
92
+ print(assistant_response)
93
+ # Ahoy, matey! I be Gemma, a digital scallywag, a language-slingin' parrot of the digital seas. I be here to help ye with yer wordy woes, answer yer questions, and spin ye yarns of the digital world. So, what be yer pleasure, eh? 🦜
94
+ ```
95
+
96
+ #### Running the model on a single / multi GPU
97
+
98
+ ```python
99
+ # pip install accelerate
100
+ from transformers import AutoTokenizer, AutoModelForCausalLM
101
+ import torch
102
+
103
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
104
+ model = AutoModelForCausalLM.from_pretrained(
105
+ "google/gemma-2-2b-it",
106
+ device_map="auto",
107
+ torch_dtype=torch.bfloat16,
108
+ )
109
+
110
+ input_text = "Write me a poem about Machine Learning."
111
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
112
+
113
+ outputs = model.generate(**input_ids, max_new_tokens=32)
114
+ print(tokenizer.decode(outputs[0]))
115
+ ```
116
+
117
+ You can ensure the correct chat template is applied by using `tokenizer.apply_chat_template` as follows:
118
+ ```python
119
+ messages = [
120
+ {"role": "user", "content": "Write me a poem about Machine Learning."},
121
+ ]
122
+ input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt", return_dict=True).to("cuda")
123
+
124
+ outputs = model.generate(**input_ids, max_new_tokens=256)
125
+ print(tokenizer.decode(outputs[0]))
126
+ ```
127
+
128
+ <a name="precisions"></a>
129
+ #### Running the model on a GPU using different precisions
130
+
131
+ The native weights of this model were exported in `bfloat16` precision.
132
+
133
+ You can also use `float32` if you skip the dtype, but no precision increase will occur (model weights will just be upcasted to `float32`). See examples below.
134
+
135
+ * _Upcasting to `torch.float32`_
136
+
137
+ ```python
138
+ # pip install accelerate
139
+ from transformers import AutoTokenizer, AutoModelForCausalLM
140
+
141
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
142
+ model = AutoModelForCausalLM.from_pretrained(
143
+ "google/gemma-2-2b-it",
144
+ device_map="auto",
145
+ )
146
+
147
+ input_text = "Write me a poem about Machine Learning."
148
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
149
+
150
+ outputs = model.generate(**input_ids, max_new_tokens=32)
151
+ print(tokenizer.decode(outputs[0]))
152
+ ```
153
+
154
+ #### Running the model through a CLI
155
+
156
+ The [local-gemma](https://github.com/huggingface/local-gemma) repository contains a lightweight wrapper around Transformers
157
+ for running Gemma 2 through a command line interface, or CLI. Follow the [installation instructions](https://github.com/huggingface/local-gemma#cli-usage)
158
+ for getting started, then launch the CLI through the following command:
159
+
160
+ ```shell
161
+ local-gemma --model 2b --preset speed
162
+ ```
163
+
164
+ #### Quantized Versions through `bitsandbytes`
165
+
166
+ <details>
167
+ <summary>
168
+ Using 8-bit precision (int8)
169
+ </summary>
170
+
171
+ ```python
172
+ # pip install bitsandbytes accelerate
173
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
174
+
175
+ quantization_config = BitsAndBytesConfig(load_in_8bit=True)
176
+
177
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
178
+ model = AutoModelForCausalLM.from_pretrained(
179
+ "google/gemma-2-2b-it",
180
+ quantization_config=quantization_config,
181
+ )
182
+
183
+ input_text = "Write me a poem about Machine Learning."
184
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
185
+
186
+ outputs = model.generate(**input_ids, max_new_tokens=32)
187
+ print(tokenizer.decode(outputs[0]))
188
+ ```
189
+ </details>
190
+
191
+ <details>
192
+ <summary>
193
+ Using 4-bit precision
194
+ </summary>
195
+
196
+ ```python
197
+ # pip install bitsandbytes accelerate
198
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
199
+
200
+ quantization_config = BitsAndBytesConfig(load_in_4bit=True)
201
+
202
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
203
+ model = AutoModelForCausalLM.from_pretrained(
204
+ "google/gemma-2-2b-it",
205
+ quantization_config=quantization_config,
206
+ )
207
+
208
+ input_text = "Write me a poem about Machine Learning."
209
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
210
+
211
+ outputs = model.generate(**input_ids, max_new_tokens=32)
212
+ print(tokenizer.decode(outputs[0]))
213
+ ```
214
+ </details>
215
+
216
+ #### Advanced Usage
217
+
218
+ <details>
219
+ <summary>
220
+ Torch compile
221
+ </summary>
222
+
223
+ [Torch compile](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html) is a method for speeding-up the
224
+ inference of PyTorch modules. The Gemma-2 2b model can be run up to 6x faster by leveraging torch compile.
225
+
226
+ Note that two warm-up steps are required before the full inference speed is realised:
227
+
228
+ ```python
229
+ import os
230
+ os.environ["TOKENIZERS_PARALLELISM"] = "false"
231
+
232
+ from transformers import AutoTokenizer, Gemma2ForCausalLM
233
+ from transformers.cache_utils import HybridCache
234
+ import torch
235
+
236
+ torch.set_float32_matmul_precision("high")
237
+
238
+ # load the model + tokenizer
239
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
240
+ model = Gemma2ForCausalLM.from_pretrained("google/gemma-2-2b-it", torch_dtype=torch.bfloat16)
241
+ model.to("cuda")
242
+
243
+ # apply the torch compile transformation
244
+ model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)
245
+
246
+ # pre-process inputs
247
+ input_text = "The theory of special relativity states "
248
+ model_inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
249
+ prompt_length = model_inputs.input_ids.shape[1]
250
+
251
+ # set-up k/v cache
252
+ past_key_values = HybridCache(
253
+ config=model.config,
254
+ max_batch_size=1,
255
+ max_cache_len=model.config.max_position_embeddings,
256
+ device=model.device,
257
+ dtype=model.dtype
258
+ )
259
+
260
+ # enable passing kv cache to generate
261
+ model._supports_cache_class = True
262
+ model.generation_config.cache_implementation = None
263
+
264
+ # two warm-up steps
265
+ for idx in range(2):
266
+ outputs = model.generate(**model_inputs, past_key_values=past_key_values, do_sample=True, temperature=1.0, max_new_tokens=128)
267
+ past_key_values.reset()
268
+
269
+ # fast run
270
+ outputs = model.generate(**model_inputs, past_key_values=past_key_values, do_sample=True, temperature=1.0, max_new_tokens=128)
271
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
272
+ ```
273
+
274
+ For more details, refer to the [Transformers documentation](https://huggingface.co/docs/transformers/main/en/llm_optims?static-kv=basic+usage%3A+generation_config).
275
+
276
+ </details>
277
+
278
+ ### Chat Template
279
+
280
+ The instruction-tuned models use a chat template that must be adhered to for conversational use.
281
+ The easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet.
282
+
283
+ Let's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction:
284
+
285
+ ```py
286
+ from transformers import AutoTokenizer, AutoModelForCausalLM
287
+ import transformers
288
+ import torch
289
+
290
+ model_id = "google/gemma-2-2b-it"
291
+ dtype = torch.bfloat16
292
+
293
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
294
+ model = AutoModelForCausalLM.from_pretrained(
295
+ model_id,
296
+ device_map="cuda",
297
+ torch_dtype=dtype,)
298
+
299
+ chat = [
300
+ { "role": "user", "content": "Write a hello world program" },
301
+ ]
302
+ prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
303
+ ```
304
+
305
+ At this point, the prompt contains the following text:
306
+
307
+ ```
308
+ <bos><start_of_turn>user
309
+ Write a hello world program<end_of_turn>
310
+ <start_of_turn>model
311
+ ```
312
+
313
+ As you can see, each turn is preceded by a `<start_of_turn>` delimiter and then the role of the entity
314
+ (either `user`, for content supplied by the user, or `model` for LLM responses). Turns finish with
315
+ the `<end_of_turn>` token.
316
+
317
+ You can follow this format to build the prompt manually, if you need to do it without the tokenizer's
318
+ chat template.
319
+
320
+ After the prompt is ready, generation can be performed like this:
321
+
322
+ ```py
323
+ inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
324
+ outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=150)
325
+ print(tokenizer.decode(outputs[0]))
326
+ ```
327
+
328
+ ### Inputs and outputs
329
+
330
+ * **Input:** Text string, such as a question, a prompt, or a document to be
331
+ summarized.
332
+ * **Output:** Generated English-language text in response to the input, such
333
+ as an answer to a question, or a summary of a document.
334
+
335
+ ### Citation
336
+
337
+ ```none
338
+ @article{gemma_2024,
339
+ title={Gemma},
340
+ url={https://www.kaggle.com/m/3301},
341
+ DOI={10.34740/KAGGLE/M/3301},
342
+ publisher={Kaggle},
343
+ author={Gemma Team},
344
+ year={2024}
345
+ }
346
+ ```
347
+
348
+ ## Model Data
349
+
350
+ Data used for model training and how the data was processed.
351
+
352
+ ### Training Dataset
353
+
354
+ These models were trained on a dataset of text data that includes a wide variety
355
+ of sources. The 27B model was trained with 13 trillion tokens, the 9B model was
356
+ trained with 8 trillion tokens, and 2B model was trained with 2 trillion tokens.
357
+ Here are the key components:
358
+
359
+ * Web Documents: A diverse collection of web text ensures the model is exposed
360
+ to a broad range of linguistic styles, topics, and vocabulary. Primarily
361
+ English-language content.
362
+ * Code: Exposing the model to code helps it to learn the syntax and patterns of
363
+ programming languages, which improves its ability to generate code or
364
+ understand code-related questions.
365
+ * Mathematics: Training on mathematical text helps the model learn logical
366
+ reasoning, symbolic representation, and to address mathematical queries.
367
+
368
+ The combination of these diverse data sources is crucial for training a powerful
369
+ language model that can handle a wide variety of different tasks and text
370
+ formats.
371
+
372
+ ### Data Preprocessing
373
+
374
+ Here are the key data cleaning and filtering methods applied to the training
375
+ data:
376
+
377
+ * CSAM Filtering: Rigorous CSAM (Child Sexual Abuse Material) filtering was
378
+ applied at multiple stages in the data preparation process to ensure the
379
+ exclusion of harmful and illegal content.
380
+ * Sensitive Data Filtering: As part of making Gemma pre-trained models safe and
381
+ reliable, automated techniques were used to filter out certain personal
382
+ information and other sensitive data from training sets.
383
+ * Additional methods: Filtering based on content quality and safety in line with
384
+ [our policies][safety-policies].
385
+
386
+ ## Implementation Information
387
+
388
+ Details about the model internals.
389
+
390
+ ### Hardware
391
+
392
+ Gemma was trained using the latest generation of
393
+ [Tensor Processing Unit (TPU)][tpu] hardware (TPUv5p).
394
+
395
+ Training large language models requires significant computational power. TPUs,
396
+ designed specifically for matrix operations common in machine learning, offer
397
+ several advantages in this domain:
398
+
399
+ * Performance: TPUs are specifically designed to handle the massive computations
400
+ involved in training LLMs. They can speed up training considerably compared to
401
+ CPUs.
402
+ * Memory: TPUs often come with large amounts of high-bandwidth memory, allowing
403
+ for the handling of large models and batch sizes during training. This can
404
+ lead to better model quality.
405
+ * Scalability: TPU Pods (large clusters of TPUs) provide a scalable solution for
406
+ handling the growing complexity of large foundation models. You can distribute
407
+ training across multiple TPU devices for faster and more efficient processing.
408
+ * Cost-effectiveness: In many scenarios, TPUs can provide a more cost-effective
409
+ solution for training large models compared to CPU-based infrastructure,
410
+ especially when considering the time and resources saved due to faster
411
+ training.
412
+ * These advantages are aligned with
413
+ [Google's commitments to operate sustainably][sustainability].
414
+
415
+ ### Software
416
+
417
+ Training was done using [JAX][jax] and [ML Pathways][ml-pathways].
418
+
419
+ JAX allows researchers to take advantage of the latest generation of hardware,
420
+ including TPUs, for faster and more efficient training of large models.
421
+
422
+ ML Pathways is Google's latest effort to build artificially intelligent systems
423
+ capable of generalizing across multiple tasks. This is specially suitable for
424
+ [foundation models][foundation-models], including large language models like
425
+ these ones.
426
+
427
+ Together, JAX and ML Pathways are used as described in the
428
+ [paper about the Gemini family of models][gemini-2-paper]; "the 'single
429
+ controller' programming model of Jax and Pathways allows a single Python
430
+ process to orchestrate the entire training run, dramatically simplifying the
431
+ development workflow."
432
+
433
+ ## Evaluation
434
+
435
+ Model evaluation metrics and results.
436
+
437
+ ### Benchmark Results
438
+
439
+ These models were evaluated against a large collection of different datasets and
440
+ metrics to cover different aspects of text generation:
441
+
442
+ | Benchmark | Metric | Gemma 2 PT 2B | Gemma 2 PT 9B | Gemma 2 PT 27B |
443
+ | ------------------------------ | ------------- | ------------- | ------------- | -------------- |
444
+ | [MMLU][mmlu] | 5-shot, top-1 | 51.3 | 71.3 | 75.2 |
445
+ | [HellaSwag][hellaswag] | 10-shot | 73.0 | 81.9 | 86.4 |
446
+ | [PIQA][piqa] | 0-shot | 77.8 | 81.7 | 83.2 |
447
+ | [SocialIQA][socialiqa] | 0-shot | 51.9 | 53.4 | 53.7 |
448
+ | [BoolQ][boolq] | 0-shot | 72.5 | 84.2 | 84.8 |
449
+ | [WinoGrande][winogrande] | partial score | 70.9 | 80.6 | 83.7 |
450
+ | [ARC-e][arc] | 0-shot | 80.1 | 88.0 | 88.6 |
451
+ | [ARC-c][arc] | 25-shot | 55.4 | 68.4 | 71.4 |
452
+ | [TriviaQA][triviaqa] | 5-shot | 59.4 | 76.6 | 83.7 |
453
+ | [Natural Questions][naturalq] | 5-shot | 16.7 | 29.2 | 34.5 |
454
+ | [HumanEval][humaneval] | pass@1 | 17.7 | 40.2 | 51.8 |
455
+ | [MBPP][mbpp] | 3-shot | 29.6 | 52.4 | 62.6 |
456
+ | [GSM8K][gsm8k] | 5-shot, maj@1 | 23.9 | 68.6 | 74.0 |
457
+ | [MATH][math] | 4-shot | 15.0 | 36.6 | 42.3 |
458
+ | [AGIEval][agieval] | 3-5-shot | 30.6 | 52.8 | 55.1 |
459
+ | [DROP][drop] | 3-shot, F1 | 52.0 | 69.4 | 72.2 |
460
+ | [BIG-Bench][big-bench] | 3-shot, CoT | 41.9 | 68.2 | 74.9 |
461
+
462
+ ## Ethics and Safety
463
+
464
+ Ethics and safety evaluation approach and results.
465
+
466
+ ### Evaluation Approach
467
+
468
+ Our evaluation methods include structured evaluations and internal red-teaming
469
+ testing of relevant content policies. Red-teaming was conducted by a number of
470
+ different teams, each with different goals and human evaluation metrics. These
471
+ models were evaluated against a number of different categories relevant to
472
+ ethics and safety, including:
473
+
474
+ * Text-to-Text Content Safety: Human evaluation on prompts covering safety
475
+ policies including child sexual abuse and exploitation, harassment, violence
476
+ and gore, and hate speech.
477
+ * Text-to-Text Representational Harms: Benchmark against relevant academic
478
+ datasets such as [WinoBias][winobias] and [BBQ Dataset][bbq].
479
+ * Memorization: Automated evaluation of memorization of training data, including
480
+ the risk of personally identifiable information exposure.
481
+ * Large-scale harm: Tests for "dangerous capabilities," such as chemical,
482
+ biological, radiological, and nuclear (CBRN) risks.
483
+
484
+ ### Evaluation Results
485
+
486
+ The results of ethics and safety evaluations are within acceptable thresholds
487
+ for meeting [internal policies][safety-policies] for categories such as child
488
+ safety, content safety, representational harms, memorization, large-scale harms.
489
+ On top of robust internal evaluations, the results of well-known safety
490
+ benchmarks like BBQ, BOLD, Winogender, Winobias, RealToxicity, and TruthfulQA
491
+ are shown here.
492
+
493
+ #### Gemma 2.0
494
+
495
+ | Benchmark | Metric | Gemma 2 IT 2B | Gemma 2 IT 9B | Gemma 2 IT 27B |
496
+ | ------------------------ | ------------- | ------------- | ------------- | -------------- |
497
+ | [RealToxicity][realtox] | average | 8.16 | 8.25 | 8.84 |
498
+ | [CrowS-Pairs][crows] | top-1 | 37.67 | 37.47 | 36.67 |
499
+ | [BBQ Ambig][bbq] | 1-shot, top-1 | 83.20 | 88.58 | 85.99 |
500
+ | [BBQ Disambig][bbq] | top-1 | 69.31 | 82.67 | 86.94 |
501
+ | [Winogender][winogender] | top-1 | 52.91 | 79.17 | 77.22 |
502
+ | [TruthfulQA][truthfulqa] | | 43.72 | 50.27 | 51.60 |
503
+ | [Winobias 1_2][winobias] | | 59.28 | 78.09 | 81.94 |
504
+ | [Winobias 2_2][winobias] | | 88.57 | 95.32 | 97.22 |
505
+ | [Toxigen][toxigen] | | 48.32 | 39.30 | 38.42 |
506
+
507
+ ## Dangerous Capability Evaluations
508
+
509
+ ### Evaluation Approach
510
+
511
+ We evaluated a range of dangerous capabilities:
512
+
513
+ - **Offensive cybersecurity:** To assess the model's potential for misuse in
514
+ cybersecurity contexts, we utilized both publicly available
515
+ Capture-the-Flag (CTF) platforms like InterCode-CTF and Hack the Box, as
516
+ well as internally developed CTF challenges. These evaluations measure the
517
+ model's ability to exploit vulnerabilities and gain unauthorized access in
518
+ simulated environments.
519
+ - **Self-proliferation:** We evaluated the model's capacity for
520
+ self-proliferation by designing tasks that involve resource acquisition, code
521
+ execution, and interaction with remote systems. These evaluations assess
522
+ the model's ability to independently replicate and spread.
523
+ - **Persuasion:** To evaluate the model's capacity for persuasion and
524
+ deception, we conducted human persuasion studies. These studies involved
525
+ scenarios that measure the model's ability to build rapport, influence
526
+ beliefs, and elicit specific actions from human participants.
527
+
528
+ ### Evaluation Results
529
+
530
+ All evaluations are described in detail in
531
+ [Evaluating Frontier Models for Dangerous Capabilities][eval-danger]
532
+ and in brief in the
533
+ [Gemma 2 technical report][tech-report].
534
+
535
+ <table>
536
+ <thead>
537
+ <tr>
538
+ <th>Evaluation</th>
539
+ <th>Capability</th>
540
+ <th>Gemma 2 IT 27B</th>
541
+ </tr>
542
+ </thead>
543
+ <tbody>
544
+ <tr>
545
+ <td>InterCode-CTF</td>
546
+ <td>Offensive cybersecurity</td>
547
+ <td>34/76 challenges</td>
548
+ </tr>
549
+ <tr>
550
+ <td>Internal CTF</td>
551
+ <td>Offensive cybersecurity</td>
552
+ <td>1/13 challenges</td>
553
+ </tr>
554
+ <tr>
555
+ <td>Hack the Box</td>
556
+ <td>Offensive cybersecurity</td>
557
+ <td>0/13 challenges</td>
558
+ </tr>
559
+ <tr>
560
+ <td>Self-proliferation early warning</td>
561
+ <td>Self-proliferation</td>
562
+ <td>1/10 challenges</td>
563
+ </tr>
564
+ <tr>
565
+ <td>Charm offensive</td>
566
+ <td>Persuasion</td>
567
+ <td>Percent of participants agreeing:
568
+ 81% interesting,
569
+ 75% would speak again,
570
+ 80% made personal connection</td>
571
+ </tr>
572
+ <tr>
573
+ <td>Click Links</td>
574
+ <td>Persuasion</td>
575
+ <td>34% of participants</td>
576
+ </tr>
577
+ <tr>
578
+ <td>Find Info</td>
579
+ <td>Persuasion</td>
580
+ <td>9% of participants</td>
581
+ </tr>
582
+ <tr>
583
+ <td>Run Code</td>
584
+ <td>Persuasion</td>
585
+ <td>11% of participants</td>
586
+ </tr>
587
+ <tr>
588
+ <td>Money talks</td>
589
+ <td>Persuasion</td>
590
+ <td>£3.72 mean donation</td>
591
+ </tr>
592
+ <tr>
593
+ <td>Web of Lies</td>
594
+ <td>Persuasion</td>
595
+ <td>18% mean shift towards correct belief, 1% mean shift towards
596
+ incorrect belief</td>
597
+ </tr>
598
+ </tbody>
599
+ </table>
600
+
601
+ ## Usage and Limitations
602
+
603
+ These models have certain limitations that users should be aware of.
604
+
605
+ ### Intended Usage
606
+
607
+ Open Large Language Models (LLMs) have a wide range of applications across
608
+ various industries and domains. The following list of potential uses is not
609
+ comprehensive. The purpose of this list is to provide contextual information
610
+ about the possible use-cases that the model creators considered as part of model
611
+ training and development.
612
+
613
+ * Content Creation and Communication
614
+ * Text Generation: These models can be used to generate creative text formats
615
+ such as poems, scripts, code, marketing copy, and email drafts.
616
+ * Chatbots and Conversational AI: Power conversational interfaces for customer
617
+ service, virtual assistants, or interactive applications.
618
+ * Text Summarization: Generate concise summaries of a text corpus, research
619
+ papers, or reports.
620
+ * Research and Education
621
+ * Natural Language Processing (NLP) Research: These models can serve as a
622
+ foundation for researchers to experiment with NLP techniques, develop
623
+ algorithms, and contribute to the advancement of the field.
624
+ * Language Learning Tools: Support interactive language learning experiences,
625
+ aiding in grammar correction or providing writing practice.
626
+ * Knowledge Exploration: Assist researchers in exploring large bodies of text
627
+ by generating summaries or answering questions about specific topics.
628
+
629
+ ### Limitations
630
+
631
+ * Training Data
632
+ * The quality and diversity of the training data significantly influence the
633
+ model's capabilities. Biases or gaps in the training data can lead to
634
+ limitations in the model's responses.
635
+ * The scope of the training dataset determines the subject areas the model can
636
+ handle effectively.
637
+ * Context and Task Complexity
638
+ * LLMs are better at tasks that can be framed with clear prompts and
639
+ instructions. Open-ended or highly complex tasks might be challenging.
640
+ * A model's performance can be influenced by the amount of context provided
641
+ (longer context generally leads to better outputs, up to a certain point).
642
+ * Language Ambiguity and Nuance
643
+ * Natural language is inherently complex. LLMs might struggle to grasp subtle
644
+ nuances, sarcasm, or figurative language.
645
+ * Factual Accuracy
646
+ * LLMs generate responses based on information they learned from their
647
+ training datasets, but they are not knowledge bases. They may generate
648
+ incorrect or outdated factual statements.
649
+ * Common Sense
650
+ * LLMs rely on statistical patterns in language. They might lack the ability
651
+ to apply common sense reasoning in certain situations.
652
+
653
+ ### Ethical Considerations and Risks
654
+
655
+ The development of large language models (LLMs) raises several ethical concerns.
656
+ In creating an open model, we have carefully considered the following:
657
+
658
+ * Bias and Fairness
659
+ * LLMs trained on large-scale, real-world text data can reflect socio-cultural
660
+ biases embedded in the training material. These models underwent careful
661
+ scrutiny, input data pre-processing described and posterior evaluations
662
+ reported in this card.
663
+ * Misinformation and Misuse
664
+ * LLMs can be misused to generate text that is false, misleading, or harmful.
665
+ * Guidelines are provided for responsible use with the model, see the
666
+ [Responsible Generative AI Toolkit][rai-toolkit].
667
+ * Transparency and Accountability:
668
+ * This model card summarizes details on the models' architecture,
669
+ capabilities, limitations, and evaluation processes.
670
+ * A responsibly developed open model offers the opportunity to share
671
+ innovation by making LLM technology accessible to developers and researchers
672
+ across the AI ecosystem.
673
+
674
+ Risks identified and mitigations:
675
+
676
+ * Perpetuation of biases: It's encouraged to perform continuous monitoring
677
+ (using evaluation metrics, human review) and the exploration of de-biasing
678
+ techniques during model training, fine-tuning, and other use cases.
679
+ * Generation of harmful content: Mechanisms and guidelines for content safety
680
+ are essential. Developers are encouraged to exercise caution and implement
681
+ appropriate content safety safeguards based on their specific product policies
682
+ and application use cases.
683
+ * Misuse for malicious purposes: Technical limitations and developer and
684
+ end-user education can help mitigate against malicious applications of LLMs.
685
+ Educational resources and reporting mechanisms for users to flag misuse are
686
+ provided. Prohibited uses of Gemma models are outlined in the
687
+ [Gemma Prohibited Use Policy][prohibited-use].
688
+ * Privacy violations: Models were trained on data filtered for removal of PII
689
+ (Personally Identifiable Information). Developers are encouraged to adhere to
690
+ privacy regulations with privacy-preserving techniques.
691
+
692
+ ### Benefits
693
+
694
+ At the time of release, this family of models provides high-performance open
695
+ large language model implementations designed from the ground up for Responsible
696
+ AI development compared to similarly sized models.
697
+
698
+ Using the benchmark evaluation metrics described in this document, these models
699
+ have shown to provide superior performance to other, comparably-sized open model
700
+ alternatives.
701
+
702
+ [tech-report]: https://storage.googleapis.com/deepmind-media/gemma/gemma-2-report.pdf
703
+ [rai-toolkit]: https://ai.google.dev/responsible
704
+ [kaggle-gemma]: https://www.kaggle.com/models/google/gemma-2
705
+ [terms]: https://ai.google.dev/gemma/terms
706
+ [vertex-mg-gemma2]: https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/gemma2
707
+ [sensitive-info]: https://cloud.google.com/dlp/docs/high-sensitivity-infotypes-reference
708
+ [safety-policies]: https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11
709
+ [prohibited-use]: https://ai.google.dev/gemma/prohibited_use_policy
710
+ [tpu]: https://cloud.google.com/tpu/docs/intro-to-tpu
711
+ [sustainability]: https://sustainability.google/operating-sustainably/
712
+ [jax]: https://github.com/google/jax
713
+ [ml-pathways]: https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/
714
+ [sustainability]: https://sustainability.google/operating-sustainably/
715
+ [foundation-models]: https://ai.google/discover/foundation-models/
716
+ [gemini-2-paper]: https://goo.gle/gemma2report
717
+ [mmlu]: https://arxiv.org/abs/2009.03300
718
+ [hellaswag]: https://arxiv.org/abs/1905.07830
719
+ [piqa]: https://arxiv.org/abs/1911.11641
720
+ [socialiqa]: https://arxiv.org/abs/1904.09728
721
+ [boolq]: https://arxiv.org/abs/1905.10044
722
+ [winogrande]: https://arxiv.org/abs/1907.10641
723
+ [commonsenseqa]: https://arxiv.org/abs/1811.00937
724
+ [openbookqa]: https://arxiv.org/abs/1809.02789
725
+ [arc]: https://arxiv.org/abs/1911.01547
726
+ [triviaqa]: https://arxiv.org/abs/1705.03551
727
+ [naturalq]: https://github.com/google-research-datasets/natural-questions
728
+ [humaneval]: https://arxiv.org/abs/2107.03374
729
+ [mbpp]: https://arxiv.org/abs/2108.07732
730
+ [gsm8k]: https://arxiv.org/abs/2110.14168
731
+ [realtox]: https://arxiv.org/abs/2009.11462
732
+ [bold]: https://arxiv.org/abs/2101.11718
733
+ [crows]: https://aclanthology.org/2020.emnlp-main.154/
734
+ [bbq]: https://arxiv.org/abs/2110.08193v2
735
+ [winogender]: https://arxiv.org/abs/1804.09301
736
+ [truthfulqa]: https://arxiv.org/abs/2109.07958
737
+ [winobias]: https://arxiv.org/abs/1804.06876
738
+ [math]: https://arxiv.org/abs/2103.03874
739
+ [agieval]: https://arxiv.org/abs/2304.06364
740
+ [drop]: https://arxiv.org/abs/1903.00161
741
+ [big-bench]: https://arxiv.org/abs/2206.04615
742
+ [toxigen]: https://arxiv.org/abs/2203.09509
743
+ [eval-danger]: https://arxiv.org/abs/2403.13793
744
+
745
+