Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) tinyllama-sft-orca_chat-mix - AWQ - Model creator: https://huggingface.co./andrewbai/ - Original model: https://huggingface.co./andrewbai/tinyllama-sft-orca_chat-mix/ Original model description: --- license: apache-2.0 base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T tags: - alignment-handbook - trl - sft - generated_from_trainer - trl - sft - generated_from_trainer datasets: - ucla-cmllab/orca-chat_100k-chat-format - ucla-cmllab/RedPajama_100k model-index: - name: tinyllama-sft-orca_chat-mix results: [] --- # tinyllama-sft-orca_chat-mix This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co./TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) on the ucla-cmllab/orca-chat_100k-chat-format and the ucla-cmllab/RedPajama_100k datasets. It achieves the following results on the evaluation set: - Loss: 0.9497 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9347 | 0.9994 | 781 | 0.9497 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1