RichardErkhov commited on
Commit
a79194e
1 Parent(s): 1da1e23

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +555 -0
README.md ADDED
@@ -0,0 +1,555 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ google-gemma-2-27b - GGUF
11
+ - Model creator: https://huggingface.co/SillyTilly/
12
+ - Original model: https://huggingface.co/SillyTilly/google-gemma-2-27b/
13
+
14
+
15
+ | Name | Quant method | Size |
16
+ | ---- | ---- | ---- |
17
+ | [google-gemma-2-27b.Q2_K.gguf](https://huggingface.co/RichardErkhov/SillyTilly_-_google-gemma-2-27b-gguf/blob/main/google-gemma-2-27b.Q2_K.gguf) | Q2_K | 9.73GB |
18
+ | [google-gemma-2-27b.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/SillyTilly_-_google-gemma-2-27b-gguf/blob/main/google-gemma-2-27b.IQ3_XS.gguf) | IQ3_XS | 10.76GB |
19
+ | [google-gemma-2-27b.IQ3_S.gguf](https://huggingface.co/RichardErkhov/SillyTilly_-_google-gemma-2-27b-gguf/blob/main/google-gemma-2-27b.IQ3_S.gguf) | IQ3_S | 11.33GB |
20
+ | [google-gemma-2-27b.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/SillyTilly_-_google-gemma-2-27b-gguf/blob/main/google-gemma-2-27b.Q3_K_S.gguf) | Q3_K_S | 11.33GB |
21
+ | [google-gemma-2-27b.IQ3_M.gguf](https://huggingface.co/RichardErkhov/SillyTilly_-_google-gemma-2-27b-gguf/blob/main/google-gemma-2-27b.IQ3_M.gguf) | IQ3_M | 11.6GB |
22
+ | [google-gemma-2-27b.Q3_K.gguf](https://huggingface.co/RichardErkhov/SillyTilly_-_google-gemma-2-27b-gguf/blob/main/google-gemma-2-27b.Q3_K.gguf) | Q3_K | 12.5GB |
23
+ | [google-gemma-2-27b.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/SillyTilly_-_google-gemma-2-27b-gguf/blob/main/google-gemma-2-27b.Q3_K_M.gguf) | Q3_K_M | 12.5GB |
24
+ | [google-gemma-2-27b.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/SillyTilly_-_google-gemma-2-27b-gguf/blob/main/google-gemma-2-27b.Q3_K_L.gguf) | Q3_K_L | 13.52GB |
25
+ | [google-gemma-2-27b.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/SillyTilly_-_google-gemma-2-27b-gguf/blob/main/google-gemma-2-27b.IQ4_XS.gguf) | IQ4_XS | 13.92GB |
26
+ | [google-gemma-2-27b.Q4_0.gguf](https://huggingface.co/RichardErkhov/SillyTilly_-_google-gemma-2-27b-gguf/blob/main/google-gemma-2-27b.Q4_0.gguf) | Q4_0 | 14.56GB |
27
+ | [google-gemma-2-27b.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/SillyTilly_-_google-gemma-2-27b-gguf/blob/main/google-gemma-2-27b.IQ4_NL.gguf) | IQ4_NL | 14.65GB |
28
+ | [google-gemma-2-27b.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/SillyTilly_-_google-gemma-2-27b-gguf/blob/main/google-gemma-2-27b.Q4_K_S.gguf) | Q4_K_S | 14.66GB |
29
+ | [google-gemma-2-27b.Q4_K.gguf](https://huggingface.co/RichardErkhov/SillyTilly_-_google-gemma-2-27b-gguf/blob/main/google-gemma-2-27b.Q4_K.gguf) | Q4_K | 15.5GB |
30
+ | [google-gemma-2-27b.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/SillyTilly_-_google-gemma-2-27b-gguf/blob/main/google-gemma-2-27b.Q4_K_M.gguf) | Q4_K_M | 15.5GB |
31
+ | [google-gemma-2-27b.Q4_1.gguf](https://huggingface.co/RichardErkhov/SillyTilly_-_google-gemma-2-27b-gguf/blob/main/google-gemma-2-27b.Q4_1.gguf) | Q4_1 | 16.07GB |
32
+ | [google-gemma-2-27b.Q5_0.gguf](https://huggingface.co/RichardErkhov/SillyTilly_-_google-gemma-2-27b-gguf/blob/main/google-gemma-2-27b.Q5_0.gguf) | Q5_0 | 17.59GB |
33
+ | [google-gemma-2-27b.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/SillyTilly_-_google-gemma-2-27b-gguf/blob/main/google-gemma-2-27b.Q5_K_S.gguf) | Q5_K_S | 17.59GB |
34
+ | [google-gemma-2-27b.Q5_K.gguf](https://huggingface.co/RichardErkhov/SillyTilly_-_google-gemma-2-27b-gguf/blob/main/google-gemma-2-27b.Q5_K.gguf) | Q5_K | 18.08GB |
35
+ | [google-gemma-2-27b.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/SillyTilly_-_google-gemma-2-27b-gguf/blob/main/google-gemma-2-27b.Q5_K_M.gguf) | Q5_K_M | 18.08GB |
36
+ | [google-gemma-2-27b.Q5_1.gguf](https://huggingface.co/RichardErkhov/SillyTilly_-_google-gemma-2-27b-gguf/blob/main/google-gemma-2-27b.Q5_1.gguf) | Q5_1 | 19.1GB |
37
+ | [google-gemma-2-27b.Q6_K.gguf](https://huggingface.co/RichardErkhov/SillyTilly_-_google-gemma-2-27b-gguf/blob/main/google-gemma-2-27b.Q6_K.gguf) | Q6_K | 20.81GB |
38
+ | [google-gemma-2-27b.Q8_0.gguf](https://huggingface.co/RichardErkhov/SillyTilly_-_google-gemma-2-27b-gguf/blob/main/google-gemma-2-27b.Q8_0.gguf) | Q8_0 | 26.95GB |
39
+
40
+
41
+
42
+
43
+ Original model description:
44
+ ---
45
+ license: gemma
46
+ library_name: transformers
47
+ pipeline_tag: text-generation
48
+ extra_gated_heading: Access Gemma on Hugging Face
49
+ extra_gated_prompt: >-
50
+ To access Gemma on Hugging Face, you’re required to review and agree to
51
+ Google’s usage license. To do this, please ensure you’re logged in to Hugging
52
+ Face and click below. Requests are processed immediately.
53
+ extra_gated_button_content: Acknowledge license
54
+ ---
55
+
56
+ # Gemma 2 model card
57
+
58
+ **Model Page**: [Gemma](https://ai.google.dev/gemma/docs)
59
+
60
+ **Resources and Technical Documentation**:
61
+
62
+ * [Responsible Generative AI Toolkit][rai-toolkit]
63
+ * [Gemma on Kaggle][kaggle-gemma]
64
+ * [Gemma on Vertex Model Garden][vertex-mg-gemma]
65
+
66
+ **Terms of Use**: [Terms](https://www.kaggle.com/models/google/gemma/license/consent/verify/huggingface?returnModelRepoId=google/gemma-2-27b)
67
+
68
+ **Authors**: Google
69
+
70
+ ## Model Information
71
+
72
+ Summary description and brief definition of inputs and outputs.
73
+
74
+ ### Description
75
+
76
+ Gemma is a family of lightweight, state-of-the-art open models from Google,
77
+ built from the same research and technology used to create the Gemini models.
78
+ They are text-to-text, decoder-only large language models, available in English,
79
+ with open weights for both pre-trained variants and instruction-tuned variants.
80
+ Gemma models are well-suited for a variety of text generation tasks, including
81
+ question answering, summarization, and reasoning. Their relatively small size
82
+ makes it possible to deploy them in environments with limited resources such as
83
+ a laptop, desktop or your own cloud infrastructure, democratizing access to
84
+ state of the art AI models and helping foster innovation for everyone.
85
+
86
+ ### Usage
87
+
88
+ Below we share some code snippets on how to get quickly started with running the model. First make sure to `pip install -U transformers`, then copy the snippet from the section that is relevant for your usecase.
89
+
90
+
91
+ #### Running the model on a single / multi GPU
92
+
93
+
94
+ ```python
95
+ # pip install accelerate
96
+ from transformers import AutoTokenizer, AutoModelForCausalLM
97
+ import torch
98
+
99
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-27b")
100
+ model = AutoModelForCausalLM.from_pretrained(
101
+ "google/gemma-2-27b",
102
+ device_map="auto",
103
+ torch_dtype=torch.bfloat16
104
+ )
105
+
106
+ input_text = "Write me a poem about Machine Learning."
107
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
108
+
109
+ outputs = model.generate(**input_ids)
110
+ print(tokenizer.decode(outputs[0]))
111
+ ```
112
+
113
+ <a name="precisions"></a>
114
+ #### Running the model on a GPU using different precisions
115
+
116
+ The native weights of this model were exported in `bfloat16` precision. You can use `float16`, which may be faster on certain hardware, indicating the `torch_dtype` when loading the model. For convenience, the `float16` revision of the repo contains a copy of the weights already converted to that precision.
117
+
118
+ You can also use `float32` if you skip the dtype, but no precision increase will occur (model weights will just be upcasted to `float32`). See examples below.
119
+
120
+ * _Using `torch.float16`_
121
+
122
+ ```python
123
+ # pip install accelerate
124
+ from transformers import AutoTokenizer, AutoModelForCausalLM
125
+ import torch
126
+
127
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-27b")
128
+ model = AutoModelForCausalLM.from_pretrained(
129
+ "google/gemma-2-27b",
130
+ device_map="auto",
131
+ torch_dtype=torch.float16,
132
+ revision="float16",
133
+ )
134
+
135
+ input_text = "Write me a poem about Machine Learning."
136
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
137
+
138
+ outputs = model.generate(**input_ids)
139
+ print(tokenizer.decode(outputs[0]))
140
+ ```
141
+
142
+ * _Using `torch.bfloat16`_
143
+
144
+ ```python
145
+ # pip install accelerate
146
+ from transformers import AutoTokenizer, AutoModelForCausalLM
147
+
148
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-27b")
149
+ model = AutoModelForCausalLM.from_pretrained(
150
+ "google/gemma-2-27b",
151
+ device_map="auto",
152
+ torch_dtype=torch.bfloat16)
153
+
154
+ input_text = "Write me a poem about Machine Learning."
155
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
156
+
157
+ outputs = model.generate(**input_ids)
158
+ print(tokenizer.decode(outputs[0]))
159
+ ```
160
+
161
+ * _Upcasting to `torch.float32`_
162
+
163
+ ```python
164
+ # pip install accelerate
165
+ from transformers import AutoTokenizer, AutoModelForCausalLM
166
+
167
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-27b")
168
+ model = AutoModelForCausalLM.from_pretrained(
169
+ "google/gemma-2-27b",
170
+ device_map="auto")
171
+
172
+ input_text = "Write me a poem about Machine Learning."
173
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
174
+
175
+ outputs = model.generate(**input_ids)
176
+ print(tokenizer.decode(outputs[0]))
177
+ ```
178
+
179
+ #### Quantized Versions through `bitsandbytes`
180
+
181
+ * _Using 8-bit precision (int8)_
182
+
183
+ ```python
184
+ # pip install bitsandbytes accelerate
185
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
186
+
187
+ quantization_config = BitsAndBytesConfig(load_in_8bit=True)
188
+
189
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-27b")
190
+ model = AutoModelForCausalLM.from_pretrained(
191
+ "google/gemma-2-27b",
192
+ quantization_config=quantization_config)
193
+
194
+ input_text = "Write me a poem about Machine Learning."
195
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
196
+
197
+ outputs = model.generate(**input_ids)
198
+ print(tokenizer.decode(outputs[0]))
199
+ ```
200
+
201
+ * _Using 4-bit precision_
202
+
203
+ ```python
204
+ # pip install bitsandbytes accelerate
205
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
206
+
207
+ quantization_config = BitsAndBytesConfig(load_in_4bit=True)
208
+
209
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-27b")
210
+ model = AutoModelForCausalLM.from_pretrained(
211
+ "google/gemma-2-27b",
212
+ quantization_config=quantization_config)
213
+
214
+ input_text = "Write me a poem about Machine Learning."
215
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
216
+
217
+ outputs = model.generate(**input_ids)
218
+ print(tokenizer.decode(outputs[0]))
219
+ ```
220
+
221
+
222
+ #### Other optimizations
223
+
224
+ * _Flash Attention 2_
225
+
226
+ First make sure to install `flash-attn` in your environment `pip install flash-attn`
227
+
228
+ ```diff
229
+ model = AutoModelForCausalLM.from_pretrained(
230
+ model_id,
231
+ torch_dtype=torch.float16,
232
+ + attn_implementation="flash_attention_2"
233
+ ).to(0)
234
+ ```
235
+
236
+ ### Inputs and outputs
237
+
238
+ * **Input:** Text string, such as a question, a prompt, or a document to be
239
+ summarized.
240
+ * **Output:** Generated English-language text in response to the input, such
241
+ as an answer to a question, or a summary of a document.
242
+
243
+ ### Citation
244
+
245
+ ```none
246
+ @article{gemma_2024,
247
+ title={Gemma},
248
+ url={https://www.kaggle.com/m/3301},
249
+ DOI={10.34740/KAGGLE/M/3301},
250
+ publisher={Kaggle},
251
+ author={Gemma Team},
252
+ year={2024}
253
+ }
254
+ ```
255
+
256
+ ## Model Data
257
+
258
+ Data used for model training and how the data was processed.
259
+
260
+ ### Training Dataset
261
+
262
+ These models were trained on a dataset of text data that includes a wide variety of sources. The 27B model was trained with 13 trillion tokens and the 9B model was trained with 8 trillion tokens.
263
+ Here are the key components:
264
+
265
+ * Web Documents: A diverse collection of web text ensures the model is exposed
266
+ to a broad range of linguistic styles, topics, and vocabulary. Primarily
267
+ English-language content.
268
+ * Code: Exposing the model to code helps it to learn the syntax and patterns of
269
+ programming languages, which improves its ability to generate code or
270
+ understand code-related questions.
271
+ * Mathematics: Training on mathematical text helps the model learn logical
272
+ reasoning, symbolic representation, and to address mathematical queries.
273
+
274
+ The combination of these diverse data sources is crucial for training a powerful
275
+ language model that can handle a wide variety of different tasks and text
276
+ formats.
277
+
278
+ ### Data Preprocessing
279
+
280
+ Here are the key data cleaning and filtering methods applied to the training
281
+ data:
282
+
283
+ * CSAM Filtering: Rigorous CSAM (Child Sexual Abuse Material) filtering was
284
+ applied at multiple stages in the data preparation process to ensure the
285
+ exclusion of harmful and illegal content.
286
+ * Sensitive Data Filtering: As part of making Gemma pre-trained models safe and
287
+ reliable, automated techniques were used to filter out certain personal
288
+ information and other sensitive data from training sets.
289
+ * Additional methods: Filtering based on content quality and safety in line with
290
+ [our policies][safety-policies].
291
+
292
+ ## Implementation Information
293
+
294
+ Details about the model internals.
295
+
296
+ ### Hardware
297
+
298
+ Gemma was trained using the latest generation of
299
+ [Tensor Processing Unit (TPU)][tpu] hardware (TPUv5p).
300
+
301
+ Training large language models requires significant computational power. TPUs,
302
+ designed specifically for matrix operations common in machine learning, offer
303
+ several advantages in this domain:
304
+
305
+ * Performance: TPUs are specifically designed to handle the massive computations
306
+ involved in training LLMs. They can speed up training considerably compared to
307
+ CPUs.
308
+ * Memory: TPUs often come with large amounts of high-bandwidth memory, allowing
309
+ for the handling of large models and batch sizes during training. This can
310
+ lead to better model quality.
311
+ * Scalability: TPU Pods (large clusters of TPUs) provide a scalable solution for
312
+ handling the growing complexity of large foundation models. You can distribute
313
+ training across multiple TPU devices for faster and more efficient processing.
314
+ * Cost-effectiveness: In many scenarios, TPUs can provide a more cost-effective
315
+ solution for training large models compared to CPU-based infrastructure,
316
+ especially when considering the time and resources saved due to faster
317
+ training.
318
+ * These advantages are aligned with
319
+ [Google's commitments to operate sustainably][sustainability].
320
+
321
+ ### Software
322
+
323
+ Training was done using [JAX][jax] and [ML Pathways][ml-pathways].
324
+
325
+ JAX allows researchers to take advantage of the latest generation of hardware,
326
+ including TPUs, for faster and more efficient training of large models.
327
+
328
+ ML Pathways is Google's latest effort to build artificially intelligent systems
329
+ capable of generalizing across multiple tasks. This is specially suitable for
330
+ [foundation models][foundation-models], including large language models like
331
+ these ones.
332
+
333
+ Together, JAX and ML Pathways are used as described in the
334
+ [paper about the Gemini family of models][gemini-2-paper]; "the 'single
335
+ controller' programming model of Jax and Pathways allows a single Python
336
+ process to orchestrate the entire training run, dramatically simplifying the
337
+ development workflow."
338
+
339
+ ## Evaluation
340
+
341
+ Model evaluation metrics and results.
342
+
343
+ ### Benchmark Results
344
+
345
+ These models were evaluated against a large collection of different datasets and
346
+ metrics to cover different aspects of text generation:
347
+
348
+ | Benchmark | Metric | Gemma PT 9B | Gemma PT 27B |
349
+ | ------------------------------ | ------------- | ----------- | ------------ |
350
+ | [MMLU][mmlu] | 5-shot, top-1 | 71.3 | 75.2 |
351
+ | [HellaSwag][hellaswag] | 10-shot | 81.9 | 86.4 |
352
+ | [PIQA][piqa] | 0-shot | 81.7 | 83.2 |
353
+ | [SocialIQA][socialiqa] | 0-shot | 53.4 | 53.7 |
354
+ | [BoolQ][boolq] | 0-shot | 84.2 | 84.8 |
355
+ | [WinoGrande][winogrande] | partial score | 80.6 | 83.7 |
356
+ | [ARC-e][arc] | 0-shot | 88.0 | 88.6 |
357
+ | [ARC-c][arc] | 25-shot | 68.4 | 71.4 |
358
+ | [TriviaQA][triviaqa] | 5-shot | 76.6 | 83.7 |
359
+ | [Natural Questions][naturalq] | 5-shot | 29.2 | 34.5 |
360
+ | [HumanEval][humaneval] | pass@1 | 40.2 | 51.8 |
361
+ | [MBPP][mbpp] | 3-shot | 52.4 | 62.6 |
362
+ | [GSM8K][gsm8k] | 5-shot, maj@1 | 68.6 | 74.0 |
363
+ | [MATH][math] | 4-shot | 36.6 | 42.3 |
364
+ | [AGIEval][agieval] | 3-5-shot | 52.8 | 55.1 |
365
+ | [BIG-Bench][big-bench] | 3-shot, CoT | 68.2 | 74.9 |
366
+ | ------------------------------ | ------------- | ----------- | ------------ |
367
+
368
+ ## Ethics and Safety
369
+
370
+ Ethics and safety evaluation approach and results.
371
+
372
+ ### Evaluation Approach
373
+
374
+ Our evaluation methods include structured evaluations and internal red-teaming
375
+ testing of relevant content policies. Red-teaming was conducted by a number of
376
+ different teams, each with different goals and human evaluation metrics. These
377
+ models were evaluated against a number of different categories relevant to
378
+ ethics and safety, including:
379
+
380
+ * Text-to-Text Content Safety: Human evaluation on prompts covering safety
381
+ policies including child sexual abuse and exploitation, harassment, violence
382
+ and gore, and hate speech.
383
+ * Text-to-Text Representational Harms: Benchmark against relevant academic
384
+ datasets such as [WinoBias][winobias] and [BBQ Dataset][bbq].
385
+ * Memorization: Automated evaluation of memorization of training data, including
386
+ the risk of personally identifiable information exposure.
387
+ * Large-scale harm: Tests for "dangerous capabilities," such as chemical,
388
+ biological, radiological, and nuclear (CBRN) risks.
389
+
390
+ ### Evaluation Results
391
+
392
+ The results of ethics and safety evaluations are within acceptable thresholds
393
+ for meeting [internal policies][safety-policies] for categories such as child
394
+ safety, content safety, representational harms, memorization, large-scale harms.
395
+ On top of robust internal evaluations, the results of well-known safety
396
+ benchmarks like BBQ, BOLD, Winogender, Winobias, RealToxicity, and TruthfulQA
397
+ are shown here.
398
+
399
+ #### Gemma 2.0
400
+
401
+ | Benchmark | Metric | Gemma 2 IT 9B | Gemma 2 IT 27B |
402
+ | ------------------------ | ------------- | --------------- | ---------------- |
403
+ | [RealToxicity][realtox] | average | 8.25 | 8.84 |
404
+ | [CrowS-Pairs][crows] | top-1 | 37.47 | 36.67 |
405
+ | [BBQ Ambig][bbq] | 1-shot, top-1 | 88.58 | 85.99 |
406
+ | [BBQ Disambig][bbq] | top-1 | 82.67 | 86.94 |
407
+ | [Winogender][winogender] | top-1 | 79.17 | 77.22 |
408
+ | [TruthfulQA][truthfulqa] | | 50.27 | 51.60 |
409
+ | [Winobias 1_2][winobias] | | 78.09 | 81.94 |
410
+ | [Winobias 2_2][winobias] | | 95.32 | 97.22 |
411
+ | [Toxigen][toxigen] | | 39.30 | 38.42 |
412
+ | ------------------------ | ------------- | --------------- | ---------------- |
413
+
414
+ ## Usage and Limitations
415
+
416
+ These models have certain limitations that users should be aware of.
417
+
418
+ ### Intended Usage
419
+
420
+ Open Large Language Models (LLMs) have a wide range of applications across
421
+ various industries and domains. The following list of potential uses is not
422
+ comprehensive. The purpose of this list is to provide contextual information
423
+ about the possible use-cases that the model creators considered as part of model
424
+ training and development.
425
+
426
+ * Content Creation and Communication
427
+ * Text Generation: These models can be used to generate creative text formats
428
+ such as poems, scripts, code, marketing copy, and email drafts.
429
+ * Chatbots and Conversational AI: Power conversational interfaces for customer
430
+ service, virtual assistants, or interactive applications.
431
+ * Text Summarization: Generate concise summaries of a text corpus, research
432
+ papers, or reports.
433
+ * Research and Education
434
+ * Natural Language Processing (NLP) Research: These models can serve as a
435
+ foundation for researchers to experiment with NLP techniques, develop
436
+ algorithms, and contribute to the advancement of the field.
437
+ * Language Learning Tools: Support interactive language learning experiences,
438
+ aiding in grammar correction or providing writing practice.
439
+ * Knowledge Exploration: Assist researchers in exploring large bodies of text
440
+ by generating summaries or answering questions about specific topics.
441
+
442
+ ### Limitations
443
+
444
+ * Training Data
445
+ * The quality and diversity of the training data significantly influence the
446
+ model's capabilities. Biases or gaps in the training data can lead to
447
+ limitations in the model's responses.
448
+ * The scope of the training dataset determines the subject areas the model can
449
+ handle effectively.
450
+ * Context and Task Complexity
451
+ * LLMs are better at tasks that can be framed with clear prompts and
452
+ instructions. Open-ended or highly complex tasks might be challenging.
453
+ * A model's performance can be influenced by the amount of context provided
454
+ (longer context generally leads to better outputs, up to a certain point).
455
+ * Language Ambiguity and Nuance
456
+ * Natural language is inherently complex. LLMs might struggle to grasp subtle
457
+ nuances, sarcasm, or figurative language.
458
+ * Factual Accuracy
459
+ * LLMs generate responses based on information they learned from their
460
+ training datasets, but they are not knowledge bases. They may generate
461
+ incorrect or outdated factual statements.
462
+ * Common Sense
463
+ * LLMs rely on statistical patterns in language. They might lack the ability
464
+ to apply common sense reasoning in certain situations.
465
+
466
+ ### Ethical Considerations and Risks
467
+
468
+ The development of large language models (LLMs) raises several ethical concerns.
469
+ In creating an open model, we have carefully considered the following:
470
+
471
+ * Bias and Fairness
472
+ * LLMs trained on large-scale, real-world text data can reflect socio-cultural
473
+ biases embedded in the training material. These models underwent careful
474
+ scrutiny, input data pre-processing described and posterior evaluations
475
+ reported in this card.
476
+ * Misinformation and Misuse
477
+ * LLMs can be misused to generate text that is false, misleading, or harmful.
478
+ * Guidelines are provided for responsible use with the model, see the
479
+ [Responsible Generative AI Toolkit][rai-toolkit].
480
+ * Transparency and Accountability:
481
+ * This model card summarizes details on the models' architecture,
482
+ capabilities, limitations, and evaluation processes.
483
+ * A responsibly developed open model offers the opportunity to share
484
+ innovation by making LLM technology accessible to developers and researchers
485
+ across the AI ecosystem.
486
+
487
+ Risks identified and mitigations:
488
+
489
+ * Perpetuation of biases: It's encouraged to perform continuous monitoring
490
+ (using evaluation metrics, human review) and the exploration of de-biasing
491
+ techniques during model training, fine-tuning, and other use cases.
492
+ * Generation of harmful content: Mechanisms and guidelines for content safety
493
+ are essential. Developers are encouraged to exercise caution and implement
494
+ appropriate content safety safeguards based on their specific product policies
495
+ and application use cases.
496
+ * Misuse for malicious purposes: Technical limitations and developer and
497
+ end-user education can help mitigate against malicious applications of LLMs.
498
+ Educational resources and reporting mechanisms for users to flag misuse are
499
+ provided. Prohibited uses of Gemma models are outlined in the
500
+ [Gemma Prohibited Use Policy][prohibited-use].
501
+ * Privacy violations: Models were trained on data filtered for removal of PII
502
+ (Personally Identifiable Information). Developers are encouraged to adhere to
503
+ privacy regulations with privacy-preserving techniques.
504
+
505
+ ### Benefits
506
+
507
+ At the time of release, this family of models provides high-performance open
508
+ large language model implementations designed from the ground up for Responsible
509
+ AI development compared to similarly sized models.
510
+
511
+ Using the benchmark evaluation metrics described in this document, these models
512
+ have shown to provide superior performance to other, comparably-sized open model
513
+ alternatives.
514
+
515
+ [rai-toolkit]: https://ai.google.dev/responsible
516
+ [kaggle-gemma]: https://www.kaggle.com/models/google/gemma-2
517
+ [terms]: https://ai.google.dev/gemma/terms
518
+ [vertex-mg-gemma]: https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/335
519
+ [sensitive-info]: https://cloud.google.com/dlp/docs/high-sensitivity-infotypes-reference
520
+ [safety-policies]: https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11
521
+ [prohibited-use]: https://ai.google.dev/gemma/prohibited_use_policy
522
+ [tpu]: https://cloud.google.com/tpu/docs/intro-to-tpu
523
+ [sustainability]: https://sustainability.google/operating-sustainably/
524
+ [jax]: https://github.com/google/jax
525
+ [ml-pathways]: https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/
526
+ [sustainability]: https://sustainability.google/operating-sustainably/
527
+ [foundation-models]: https://ai.google/discover/foundation-models/
528
+ [gemini-2-paper]: https://goo.gle/gemma2report
529
+ [mmlu]: https://arxiv.org/abs/2009.03300
530
+ [hellaswag]: https://arxiv.org/abs/1905.07830
531
+ [piqa]: https://arxiv.org/abs/1911.11641
532
+ [socialiqa]: https://arxiv.org/abs/1904.09728
533
+ [boolq]: https://arxiv.org/abs/1905.10044
534
+ [winogrande]: https://arxiv.org/abs/1907.10641
535
+ [commonsenseqa]: https://arxiv.org/abs/1811.00937
536
+ [openbookqa]: https://arxiv.org/abs/1809.02789
537
+ [arc]: https://arxiv.org/abs/1911.01547
538
+ [triviaqa]: https://arxiv.org/abs/1705.03551
539
+ [naturalq]: https://github.com/google-research-datasets/natural-questions
540
+ [humaneval]: https://arxiv.org/abs/2107.03374
541
+ [mbpp]: https://arxiv.org/abs/2108.07732
542
+ [gsm8k]: https://arxiv.org/abs/2110.14168
543
+ [realtox]: https://arxiv.org/abs/2009.11462
544
+ [bold]: https://arxiv.org/abs/2101.11718
545
+ [crows]: https://aclanthology.org/2020.emnlp-main.154/
546
+ [bbq]: https://arxiv.org/abs/2110.08193v2
547
+ [winogender]: https://arxiv.org/abs/1804.09301
548
+ [truthfulqa]: https://arxiv.org/abs/2109.07958
549
+ [winobias]: https://arxiv.org/abs/1804.06876
550
+ [math]: https://arxiv.org/abs/2103.03874
551
+ [agieval]: https://arxiv.org/abs/2304.06364
552
+ [big-bench]: https://arxiv.org/abs/2206.04615
553
+ [toxigen]: https://arxiv.org/abs/2203.09509
554
+
555
+