Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) MiniPLM-Qwen-500M - GGUF - Model creator: https://huggingface.co./MiniLLM/ - Original model: https://huggingface.co./MiniLLM/MiniPLM-Qwen-500M/ | Name | Quant method | Size | | ---- | ---- | ---- | | [MiniPLM-Qwen-500M.Q2_K.gguf](https://huggingface.co./RichardErkhov/MiniLLM_-_MiniPLM-Qwen-500M-gguf/blob/main/MiniPLM-Qwen-500M.Q2_K.gguf) | Q2_K | 0.23GB | | [MiniPLM-Qwen-500M.Q3_K_S.gguf](https://huggingface.co./RichardErkhov/MiniLLM_-_MiniPLM-Qwen-500M-gguf/blob/main/MiniPLM-Qwen-500M.Q3_K_S.gguf) | Q3_K_S | 0.25GB | | [MiniPLM-Qwen-500M.Q3_K.gguf](https://huggingface.co./RichardErkhov/MiniLLM_-_MiniPLM-Qwen-500M-gguf/blob/main/MiniPLM-Qwen-500M.Q3_K.gguf) | Q3_K | 0.26GB | | [MiniPLM-Qwen-500M.Q3_K_M.gguf](https://huggingface.co./RichardErkhov/MiniLLM_-_MiniPLM-Qwen-500M-gguf/blob/main/MiniPLM-Qwen-500M.Q3_K_M.gguf) | Q3_K_M | 0.26GB | | [MiniPLM-Qwen-500M.Q3_K_L.gguf](https://huggingface.co./RichardErkhov/MiniLLM_-_MiniPLM-Qwen-500M-gguf/blob/main/MiniPLM-Qwen-500M.Q3_K_L.gguf) | Q3_K_L | 0.28GB | | [MiniPLM-Qwen-500M.IQ4_XS.gguf](https://huggingface.co./RichardErkhov/MiniLLM_-_MiniPLM-Qwen-500M-gguf/blob/main/MiniPLM-Qwen-500M.IQ4_XS.gguf) | IQ4_XS | 0.28GB | | [MiniPLM-Qwen-500M.Q4_0.gguf](https://huggingface.co./RichardErkhov/MiniLLM_-_MiniPLM-Qwen-500M-gguf/blob/main/MiniPLM-Qwen-500M.Q4_0.gguf) | Q4_0 | 0.29GB | | [MiniPLM-Qwen-500M.IQ4_NL.gguf](https://huggingface.co./RichardErkhov/MiniLLM_-_MiniPLM-Qwen-500M-gguf/blob/main/MiniPLM-Qwen-500M.IQ4_NL.gguf) | IQ4_NL | 0.29GB | | [MiniPLM-Qwen-500M.Q4_K_S.gguf](https://huggingface.co./RichardErkhov/MiniLLM_-_MiniPLM-Qwen-500M-gguf/blob/main/MiniPLM-Qwen-500M.Q4_K_S.gguf) | Q4_K_S | 0.29GB | | [MiniPLM-Qwen-500M.Q4_K.gguf](https://huggingface.co./RichardErkhov/MiniLLM_-_MiniPLM-Qwen-500M-gguf/blob/main/MiniPLM-Qwen-500M.Q4_K.gguf) | Q4_K | 0.3GB | | [MiniPLM-Qwen-500M.Q4_K_M.gguf](https://huggingface.co./RichardErkhov/MiniLLM_-_MiniPLM-Qwen-500M-gguf/blob/main/MiniPLM-Qwen-500M.Q4_K_M.gguf) | Q4_K_M | 0.3GB | | [MiniPLM-Qwen-500M.Q4_1.gguf](https://huggingface.co./RichardErkhov/MiniLLM_-_MiniPLM-Qwen-500M-gguf/blob/main/MiniPLM-Qwen-500M.Q4_1.gguf) | Q4_1 | 0.3GB | | [MiniPLM-Qwen-500M.Q5_0.gguf](https://huggingface.co./RichardErkhov/MiniLLM_-_MiniPLM-Qwen-500M-gguf/blob/main/MiniPLM-Qwen-500M.Q5_0.gguf) | Q5_0 | 0.32GB | | [MiniPLM-Qwen-500M.Q5_K_S.gguf](https://huggingface.co./RichardErkhov/MiniLLM_-_MiniPLM-Qwen-500M-gguf/blob/main/MiniPLM-Qwen-500M.Q5_K_S.gguf) | Q5_K_S | 0.32GB | | [MiniPLM-Qwen-500M.Q5_K.gguf](https://huggingface.co./RichardErkhov/MiniLLM_-_MiniPLM-Qwen-500M-gguf/blob/main/MiniPLM-Qwen-500M.Q5_K.gguf) | Q5_K | 0.33GB | | [MiniPLM-Qwen-500M.Q5_K_M.gguf](https://huggingface.co./RichardErkhov/MiniLLM_-_MiniPLM-Qwen-500M-gguf/blob/main/MiniPLM-Qwen-500M.Q5_K_M.gguf) | Q5_K_M | 0.33GB | | [MiniPLM-Qwen-500M.Q5_1.gguf](https://huggingface.co./RichardErkhov/MiniLLM_-_MiniPLM-Qwen-500M-gguf/blob/main/MiniPLM-Qwen-500M.Q5_1.gguf) | Q5_1 | 0.34GB | | [MiniPLM-Qwen-500M.Q6_K.gguf](https://huggingface.co./RichardErkhov/MiniLLM_-_MiniPLM-Qwen-500M-gguf/blob/main/MiniPLM-Qwen-500M.Q6_K.gguf) | Q6_K | 0.36GB | | [MiniPLM-Qwen-500M.Q8_0.gguf](https://huggingface.co./RichardErkhov/MiniLLM_-_MiniPLM-Qwen-500M-gguf/blob/main/MiniPLM-Qwen-500M.Q8_0.gguf) | Q8_0 | 0.47GB | Original model description: --- library_name: transformers license: apache-2.0 datasets: - monology/pile-uncopyrighted - MiniLLM/pile-diff_samp-qwen_1.8B-qwen_104M-r0.5 language: - en metrics: - accuracy pipeline_tag: text-generation --- # MinPLM-Qwen-500M [paper](https://arxiv.org/abs/2410.17215) | [code](https://github.com/thu-coai/MiniPLM) **MiniPLM-Qwen-500M** is a 500M model with Qwen achitecture pre-trained from scratch on [the Pile](https://huggingface.co./datasets/monology/pile-uncopyrighted) using the MiniPLM knowledge distillation framework with the [offcial Qwen1.5-1.8B](https://huggingface.co./Qwen/Qwen1.5-1.8B) as the teacher model. We also open-source the [pre-training corpus](https://huggingface.co./datasets/MiniLLM/pile-diff_samp-qwen_1.8B-qwen_104M-r0.5) refined by Difference Sampling in MiniPLM for reproducibility.
## Evaluation MiniPLM models achieves better performance given the same computation and scales well across model sizes:
## Baseline Models + [Conventional Pre-Training](https://huggingface.co./MiniLLM/Pretrain-Qwen-500M) + [VanillaKD](https://huggingface.co./MiniLLM/VanillaKD-Pretrain-Qwen-500M) ## Citation ```bibtex @article{miniplm, title={MiniPLM: Knowledge Distillation for Pre-Training Language Models}, author={Yuxian Gu and Hao Zhou and Fandong Meng and Jie Zhou and Minlie Huang}, journal={arXiv preprint arXiv:2410.17215}, year={2024} } ```