RichardErkhov
commited on
Commit
•
dead74d
1
Parent(s):
8df9a2d
uploaded readme
Browse files
README.md
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Quantization made by Richard Erkhov.
|
2 |
+
|
3 |
+
[Github](https://github.com/RichardErkhov)
|
4 |
+
|
5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
6 |
+
|
7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
8 |
+
|
9 |
+
|
10 |
+
MiniPLM-Qwen-1.2B - GGUF
|
11 |
+
- Model creator: https://huggingface.co/MiniLLM/
|
12 |
+
- Original model: https://huggingface.co/MiniLLM/MiniPLM-Qwen-1.2B/
|
13 |
+
|
14 |
+
|
15 |
+
| Name | Quant method | Size |
|
16 |
+
| ---- | ---- | ---- |
|
17 |
+
| [MiniPLM-Qwen-1.2B.Q2_K.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_MiniPLM-Qwen-1.2B-gguf/blob/main/MiniPLM-Qwen-1.2B.Q2_K.gguf) | Q2_K | 0.51GB |
|
18 |
+
| [MiniPLM-Qwen-1.2B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_MiniPLM-Qwen-1.2B-gguf/blob/main/MiniPLM-Qwen-1.2B.Q3_K_S.gguf) | Q3_K_S | 0.57GB |
|
19 |
+
| [MiniPLM-Qwen-1.2B.Q3_K.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_MiniPLM-Qwen-1.2B-gguf/blob/main/MiniPLM-Qwen-1.2B.Q3_K.gguf) | Q3_K | 0.61GB |
|
20 |
+
| [MiniPLM-Qwen-1.2B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_MiniPLM-Qwen-1.2B-gguf/blob/main/MiniPLM-Qwen-1.2B.Q3_K_M.gguf) | Q3_K_M | 0.61GB |
|
21 |
+
| [MiniPLM-Qwen-1.2B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_MiniPLM-Qwen-1.2B-gguf/blob/main/MiniPLM-Qwen-1.2B.Q3_K_L.gguf) | Q3_K_L | 0.63GB |
|
22 |
+
| [MiniPLM-Qwen-1.2B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_MiniPLM-Qwen-1.2B-gguf/blob/main/MiniPLM-Qwen-1.2B.IQ4_XS.gguf) | IQ4_XS | 0.65GB |
|
23 |
+
| [MiniPLM-Qwen-1.2B.Q4_0.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_MiniPLM-Qwen-1.2B-gguf/blob/main/MiniPLM-Qwen-1.2B.Q4_0.gguf) | Q4_0 | 0.67GB |
|
24 |
+
| [MiniPLM-Qwen-1.2B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_MiniPLM-Qwen-1.2B-gguf/blob/main/MiniPLM-Qwen-1.2B.IQ4_NL.gguf) | IQ4_NL | 0.67GB |
|
25 |
+
| [MiniPLM-Qwen-1.2B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_MiniPLM-Qwen-1.2B-gguf/blob/main/MiniPLM-Qwen-1.2B.Q4_K_S.gguf) | Q4_K_S | 0.69GB |
|
26 |
+
| [MiniPLM-Qwen-1.2B.Q4_K.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_MiniPLM-Qwen-1.2B-gguf/blob/main/MiniPLM-Qwen-1.2B.Q4_K.gguf) | Q4_K | 0.72GB |
|
27 |
+
| [MiniPLM-Qwen-1.2B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_MiniPLM-Qwen-1.2B-gguf/blob/main/MiniPLM-Qwen-1.2B.Q4_K_M.gguf) | Q4_K_M | 0.72GB |
|
28 |
+
| [MiniPLM-Qwen-1.2B.Q4_1.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_MiniPLM-Qwen-1.2B-gguf/blob/main/MiniPLM-Qwen-1.2B.Q4_1.gguf) | Q4_1 | 0.72GB |
|
29 |
+
| [MiniPLM-Qwen-1.2B.Q5_0.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_MiniPLM-Qwen-1.2B-gguf/blob/main/MiniPLM-Qwen-1.2B.Q5_0.gguf) | Q5_0 | 0.78GB |
|
30 |
+
| [MiniPLM-Qwen-1.2B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_MiniPLM-Qwen-1.2B-gguf/blob/main/MiniPLM-Qwen-1.2B.Q5_K_S.gguf) | Q5_K_S | 0.79GB |
|
31 |
+
| [MiniPLM-Qwen-1.2B.Q5_K.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_MiniPLM-Qwen-1.2B-gguf/blob/main/MiniPLM-Qwen-1.2B.Q5_K.gguf) | Q5_K | 0.81GB |
|
32 |
+
| [MiniPLM-Qwen-1.2B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_MiniPLM-Qwen-1.2B-gguf/blob/main/MiniPLM-Qwen-1.2B.Q5_K_M.gguf) | Q5_K_M | 0.81GB |
|
33 |
+
| [MiniPLM-Qwen-1.2B.Q5_1.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_MiniPLM-Qwen-1.2B-gguf/blob/main/MiniPLM-Qwen-1.2B.Q5_1.gguf) | Q5_1 | 0.83GB |
|
34 |
+
| [MiniPLM-Qwen-1.2B.Q6_K.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_MiniPLM-Qwen-1.2B-gguf/blob/main/MiniPLM-Qwen-1.2B.Q6_K.gguf) | Q6_K | 0.93GB |
|
35 |
+
| [MiniPLM-Qwen-1.2B.Q8_0.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_MiniPLM-Qwen-1.2B-gguf/blob/main/MiniPLM-Qwen-1.2B.Q8_0.gguf) | Q8_0 | 1.15GB |
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
Original model description:
|
41 |
+
---
|
42 |
+
library_name: transformers
|
43 |
+
license: apache-2.0
|
44 |
+
datasets:
|
45 |
+
- monology/pile-uncopyrighted
|
46 |
+
- MiniLLM/pile-diff_samp-qwen_1.8B-qwen_104M-r0.5
|
47 |
+
language:
|
48 |
+
- en
|
49 |
+
metrics:
|
50 |
+
- accuracy
|
51 |
+
pipeline_tag: text-generation
|
52 |
+
---
|
53 |
+
|
54 |
+
# MinPLM-Qwen-1.2B
|
55 |
+
|
56 |
+
[paper](https://arxiv.org/abs/2410.17215) | [code](https://github.com/thu-coai/MiniPLM)
|
57 |
+
|
58 |
+
**MiniPLM-Qwen-1.2B** is a 1.2B model with Qwen achitecture pre-trained from scratch on [the Pile](https://huggingface.co/datasets/monology/pile-uncopyrighted) using the MiniPLM knowledge distillation framework with the [offcial QWen1.5-1.8B](https://huggingface.co/Qwen/Qwen1.5-1.8B) as the teacher model.
|
59 |
+
|
60 |
+
We also open-source the [pre-training corpus](https://huggingface.co/datasets/MiniLLM/pile-diff_samp-qwen_1.8B-qwen_104M-r0.5) refined by Difference Sampling in MiniPLM for reproducibility.
|
61 |
+
|
62 |
+
<p align='left'>
|
63 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/624ac662102fcdff87be51b9/2BqT0NgkmIXYlktovw9kG.png" width="1000">
|
64 |
+
</p>
|
65 |
+
|
66 |
+
## Evaluation
|
67 |
+
|
68 |
+
MiniPLM models achieves better performance given the same computation and scales well across model sizes:
|
69 |
+
|
70 |
+
<p align='left'>
|
71 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/624ac662102fcdff87be51b9/EOYzajQcwQFT5PobqL3j0.png" width="1000">
|
72 |
+
</p>
|
73 |
+
|
74 |
+
## Baseline Models
|
75 |
+
+ [Conventional Pre-Training](https://huggingface.co/MiniLLM/Pretrain-Qwen-1.2B)
|
76 |
+
+ [VanillaKD](https://huggingface.co/MiniLLM/VanillaKD-Pretrain-Qwen-1.2B)
|
77 |
+
|
78 |
+
## Citation
|
79 |
+
|
80 |
+
```bibtext
|
81 |
+
@article{miniplm,
|
82 |
+
title={MiniPLM: Knowledge Distillation for Pre-Training Language Models},
|
83 |
+
author={Yuxian Gu and Hao Zhou and Fandong Meng and Jie Zhou and Minlie Huang},
|
84 |
+
journal={arXiv preprint arXiv:2410.17215},
|
85 |
+
year={2024}
|
86 |
+
}
|
87 |
+
```
|
88 |
+
|