Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) starchat2-15b-sft-v0.1 - bnb 4bits - Model creator: https://huggingface.co./HuggingFaceH4/ - Original model: https://huggingface.co./HuggingFaceH4/starchat2-15b-sft-v0.1/ Original model description: --- license: bigcode-openrail-m base_model: bigcode/starcoder2-15b tags: - alignment-handbook - generated_from_trainer datasets: - HuggingFaceH4/airoboros-3.2 - HuggingFaceH4/Code-Feedback - HuggingFaceH4/orca-math-word-problems-200k - HuggingFaceH4/SystemChat - HuggingFaceH4/capybara model-index: - name: starcoder2-15b-sft-v5.0 results: [] --- # Model Card for starchat2-15b-sft-v0.1 This model is a fine-tuned version of [bigcode/starcoder2-15b](https://huggingface.co./bigcode/starcoder2-15b) on the HuggingFaceH4/airoboros-3.2, the HuggingFaceH4/Code-Feedback, the HuggingFaceH4/orca-math-word-problems-200k, the HuggingFaceH4/SystemChat and the HuggingFaceH4/capybara datasets. It achieves the following results on the evaluation set: - Loss: 0.6614 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 16 - total_train_batch_size: 128 - total_eval_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.6422 | 1.0 | 910 | 0.6910 | | 0.5701 | 2.0 | 1820 | 0.6639 | | 0.5227 | 3.0 | 2730 | 0.6614 | ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1