{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ac4fb82f880>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ac4fb82f910>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ac4fb82f9a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ac4fb82fa30>", "_build": "<function ActorCriticPolicy._build at 0x7ac4fb82fac0>", "forward": "<function ActorCriticPolicy.forward at 0x7ac4fb82fb50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ac4fb82fbe0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ac4fb82fc70>", "_predict": "<function ActorCriticPolicy._predict at 0x7ac4fb82fd00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ac4fb82fd90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ac4fb82fe20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ac4fb82feb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ac4fc8c9480>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1718913018843694958, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMvObw07ZC8DGKYvoe9bD210Lo9axIEPAAAgD8AAIA/5owBvbjWn7mbil27Qc9DOFRiaDli4f85AACAPwAAgD8anAu98ry6P+OJK76O+hW+XWoBPYOrWTwAAAAAAAAAADNzeDpIB7a6CCqDuMu2tDWFJlC51ZaUNwAAgD8AAIA/AIT7PFyzbboHPEa7gR0hOOojADo7QuM5AACAPwAAgD/Nema8oy14PRu9Sz3hyKy+tIf/uwpfxbwAAAAAAAAAAAC1RD7989A+raBNvpKVt75XK+Y9wz5bvgAAAAAAAAAAAOIfPCkgBrp4BGS7au1jOJgcJToijfw5AACAPwAAgD/AsoW9KQBouiIjJDxRtt21Ax+EumCN4rQAAAAAAAAAAM3BsLwpRA+6G7rpOnfylTXWw4a7m2sLugAAgD8AAIA/GnVcvcOJKro7rHY6dEukNXgmwLma3pC5AACAPwAAgD+a8xe8Pap/uWSRgjridlW2sIZzuy13nrkAAIA/AACAP5pu2Tx7KoK6NfRWu+Ygl7aNZ3a5HoJ6OgAAgD8AAIA/gPreva/MFj3uOQ4/ayq9vuSpxj7NlIA+AAAAAAAAgD+a8yS8ww1JumqtvrlQ0LM1zaAxOzW04DgAAIA/AACAP818gDyFs7u5BRqlOrobiDVMK2c7RWe/uQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGdRkxIre6+MAWyUTegDjAF0lEdAtq/dHJ9y93V9lChoBkdASzjqfOD8L2gHS3loCEdAtq/dVvMr3HV9lChoBkdAUQWeyzHCGmgHS4BoCEdAtrErj2i+L3V9lChoBkdATf9Dpkf9xmgHS5RoCEdAtrFgdbPhQ3V9lChoBkdAZmPYoy9EkWgHTegDaAhHQLay8xnWatt1fZQoaAZHQGSnkJ8fFJhoB03oA2gIR0C2swh1LamGdX2UKGgGR0BkiCTjebd8aAdN6ANoCEdAtrN79ZRsM3V9lChoBkdAZcFs3yZrpWgHTegDaAhHQLazuASnLq51fZQoaAZHQGLjc/MW43FoB03oA2gIR0C2s8lbzK9xdX2UKGgGR0Bool2aDwpfaAdN6ANoCEdAtrPyw9q1xHV9lChoBkdAYjjS6UaAF2gHTegDaAhHQLaz+6JZW7x1fZQoaAZHQGfH7s4T9KpoB03oA2gIR0C2tLHS8an8dX2UKGgGR0BMekLx7RfGaAdLg2gIR0C2tNq1b7j1dX2UKGgGR0BkrspgCwKTaAdN6ANoCEdAtrUzQOWjXXV9lChoBkdAZPj/zasZHmgHTegDaAhHQLa1SuRLbpN1fZQoaAZHQGuxWiDdxhloB03oA2gIR0C2teDLr5ZbdX2UKGgGR0BTTLtmcvugaAdLoWgIR0C2tgL2QGOddX2UKGgGR0BmEZxNqQA/aAdN6ANoCEdAtratqk/KQ3V9lChoBkdAZkD3SKFZgWgHTegDaAhHQLa2v3WWhRJ1fZQoaAZHQEqJ7P6be/JoB0traAhHQLa2z5WRzRx1fZQoaAZHQGSnzdcjZ+RoB03oA2gIR0C2z9WzSkTIdX2UKGgGR0BwMajesPrfaAdNIQJoCEdAttMVXlr/KnV9lChoBkdAZxzpC8e0X2gHTegDaAhHQLbTfx4IKMN1fZQoaAZHQGPTQmu1WsBoB03oA2gIR0C208UkOZssdX2UKGgGR0BFAosI3R5UaAdLhGgIR0C21QghwEQodX2UKGgGR0Bm2E3CKrJbaAdN6ANoCEdAttVuuNgjQnV9lChoBkdAZ1UUSqU/wGgHTegDaAhHQLbVg+B6KLt1fZQoaAZHQGRHi3XqZ+hoB03oA2gIR0C21fAPmPo3dX2UKGgGR0BqBrbWVeKLaAdN6ANoCEdAttYoxM36ynV9lChoBkdAYoeosI3R5WgHTegDaAhHQLbWY1Bt1p11fZQoaAZHQGg/0J4SpR5oB03oA2gIR0C21mw75mAcdX2UKGgGR0Bwf1N9H+ZPaAdNnAJoCEdAttc8xh2GI3V9lChoBkdAZq0euFHrhWgHTegDaAhHQLbXXIJ7b+N1fZQoaAZHQGYH1O9FnZloB03oA2gIR0C219cOCoS+dX2UKGgGR0BKblrEcbR4aAdLXmgIR0C22BAqEvkBdX2UKGgGR0Bv73IOpbUxaAdNKgFoCEdAttgoNe+mFnV9lChoBkdAZ4UyzHCGe2gHTegDaAhHQLbYmAGSpzd1fZQoaAZHQGhKbM5fdARoB03oA2gIR0C22UhbKRuCdX2UKGgGR0BiRU4PwuuiaAdN6ANoCEdAttlawqy4WnV9lChoBkdAZQPGx2SuAGgHTegDaAhHQLbZalUp/gB1fZQoaAZHQEwxmmtQsPJoB0uqaAhHQLba4gXdj5N1fZQoaAZHQGh+heokzGhoB03oA2gIR0C23NiAlOXWdX2UKGgGR0BpTAyhzvJBaAdN6ANoCEdAtt1SBWgezXV9lChoBkdAaOouoP07KmgHTegDaAhHQLbeocGC7K91fZQoaAZHQE6zVjI7vG9oB0uTaAhHQLbfIG+sYEZ1fZQoaAZHQGimGZ3LV4JoB03oA2gIR0C23y8QAdXDdX2UKGgGR0BodfqcEvCeaAdN6ANoCEdAtt/lQN0/4nV9lChoBkdAYnr2hZha1WgHTegDaAhHQLbgOXxe9jB1fZQoaAZHQFbmfLs8gZFoB0uJaAhHQLbgfVinYQJ1fZQoaAZHQGTzJBw++uhoB03oA2gIR0C24IoSxqwhdX2UKGgGR0Bnhg44p+c6aAdN6ANoCEdAtuCWZlWfb3V9lChoBkdAUuDeQ+2VmmgHS35oCEdAtuDSlBQem3V9lChoBkdAZdRyMkyDZmgHTegDaAhHQLbhzxoIv8J1fZQoaAZHQGejjtG/etVoB03oA2gIR0C24kwj+rEMdX2UKGgGR0Bm+7ArQPZqaAdN6ANoCEdAtuKGxY7q6nV9lChoBkdAYiA+N96Tn2gHTegDaAhHQLbinJl8PWh1fZQoaAZHQGayxaX8fmtoB03oA2gIR0C24wyJfpljdX2UKGgGR0BmNoT4+KTCaAdN6ANoCEdAtuO+RGMGYHV9lChoBkdAcQNrCFbml2gHTVIBaAhHQLbjyjWkJrt1fZQoaAZHQGNbhCD28I1oB03oA2gIR0C24+RWHUMHdX2UKGgGR0BQ8BxYJVsDaAdLgmgIR0C25DaXSjQBdX2UKGgGR0Bg28tVaOghaAdN6ANoCEdAtv1u9i+cpnV9lChoBkdAZhabwSamXWgHTegDaAhHQLb/eaews5J1fZQoaAZHQHH9wPd2xIJoB01sAWgIR0C3AV4q9XcQdX2UKGgGR0Bp8Nbu+h4/aAdN6ANoCEdAtwGenVG0/nV9lChoBkdAY5sB4D9wWGgHTegDaAhHQLcCMwS8J2N1fZQoaAZHQGhjqJdjXnRoB03oA2gIR0C3Am8+/xlQdX2UKGgGR0BnkNVinYQKaAdN6ANoCEdAtwKs6RyOrHV9lChoBkdAaLdfzjFQ22gHTegDaAhHQLcCtp8neBR1fZQoaAZHQGY2BqsU7CBoB03oA2gIR0C3AuLCWNWEdX2UKGgGR0BooXztkWhzaAdN6ANoCEdAtwOfCiyprHV9lChoBkdAJ8+uFHrhSGgHS4FoCEdAtwP3HBDXv3V9lChoBkdAZiPmozeoDWgHTegDaAhHQLcEGPpIMBp1fZQoaAZHQGoQCDM/yG1oB03oA2gIR0C3BFHZwn6VdX2UKGgGR0Bn9dxhlUZOaAdN6ANoCEdAtwRnexfOU3V9lChoBkdAaUWpbUwztWgHTegDaAhHQLcF07yxzJZ1fZQoaAZHQFUAJHiFTNtoB0u0aAhHQLcF3tZ3cHp1fZQoaAZHQGiDvvrnkktoB03oA2gIR0C3BeIoZydXdX2UKGgGR0BkVBI6Kcd6aAdN6ANoCEdAtwYCjZcs2HV9lChoBkdAZasnAIppe2gHTegDaAhHQLcGevV3EAJ1fZQoaAZHQEgSX1J17ppoB0uDaAhHQLcHiN3GGVR1fZQoaAZHQFD0fD1oQFtoB0uMaAhHQLcJRkcS5Ah1fZQoaAZHQGliU/nnuAtoB03oA2gIR0C3CnOPmxMWdX2UKGgGR0BCb/16E8JVaAdLhmgIR0C3Ctaol2NedX2UKGgGR0BmBMu6ErXlaAdN6ANoCEdAtwxz67/XG3V9lChoBkdAZnihcqvvB2gHTegDaAhHQLcMs+ocaOx1fZQoaAZHQHHrXDziCJ5oB02VA2gIR0C3DPaL876pdX2UKGgGR0BlErC+De0paAdN6ANoCEdAtw1dSn+AE3V9lChoBkdAZ/RCSA6Mi2gHTegDaAhHQLcNnI1tO211fZQoaAZHQGHKcnmaH9FoB03oA2gIR0C3DebKJVKgdX2UKGgGR0BpgsPrfLs9aAdN6ANoCEdAtw8K7EpAlnV9lChoBkdATOd52Qnx8WgHS6NoCEdAtw9KrWAf+3V9lChoBkdAZ9LWhh6SkmgHTegDaAhHQLcPmISUTtd1fZQoaAZHQGYnu2qkuYhoB03oA2gIR0C3D9vbTMJQdX2UKGgGR0BhJ3WFvhqCaAdN6ANoCEdAtw/1hhH9WXV9lChoBkdAZRM2Jiy6c2gHTegDaAhHQLcRTQBPsRh1fZQoaAZHQGVEMotthuxoB03oA2gIR0C3EU/W+XZ5dX2UKGgGR0Bp5WTX8O0+aAdN6ANoCEdAtxFrf4yoGnV9lChoBkdAYc3l8PWhAWgHTegDaAhHQLcRxxptaZB1fZQoaAZHQHGvQOWjXWhoB00WAWgIR0C3EmZnctXgdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 380, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.9999, "gae_lambda": 0.98, "ent_coef": 0.02, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |