--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - tensorflow - vision - generated_from_keras_callback model-index: - name: RenSurii/vit-base-patch16-224-in21k-finetuned-image-classification results: [] --- # RenSurii/vit-base-patch16-224-in21k-finetuned-image-classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the mnist dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5080 - Train Accuracy: 0.958 - Validation Loss: 0.4289 - Validation Accuracy: 0.9580 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': 1.0, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 5000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 2.0110 | 0.8531 | 1.5291 | 0.8531 | 0 | | 1.3596 | 0.9151 | 0.9948 | 0.9151 | 1 | | 0.9608 | 0.9302 | 0.7593 | 0.9302 | 2 | | 0.6974 | 0.9448 | 0.5795 | 0.9448 | 3 | | 0.5080 | 0.958 | 0.4289 | 0.9580 | 4 | ### Framework versions - Transformers 4.47.0.dev0 - TensorFlow 2.18.0 - Datasets 3.1.0 - Tokenizers 0.20.3