Rejekts commited on
Commit
768d2bf
·
verified ·
1 Parent(s): 19a2a28

Upload 2 files

Browse files
Files changed (2) hide show
  1. a.png +0 -0
  2. app.py +1441 -0
a.png ADDED
app.py ADDED
@@ -0,0 +1,1441 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os, sys
2
+ import datetime, subprocess
3
+ from mega import Mega
4
+ now_dir = os.getcwd()
5
+ sys.path.append(now_dir)
6
+ import logging
7
+ import shutil
8
+ import threading
9
+ import traceback
10
+ import warnings
11
+ from random import shuffle
12
+ from subprocess import Popen
13
+ from time import sleep
14
+ import json
15
+ import pathlib
16
+
17
+ import fairseq
18
+ import faiss
19
+ import gradio as gr
20
+ import numpy as np
21
+ import torch
22
+ from dotenv import load_dotenv
23
+ from sklearn.cluster import MiniBatchKMeans
24
+
25
+ from configs.config import Config
26
+ from i18n.i18n import I18nAuto
27
+ from infer.lib.train.process_ckpt import (
28
+ change_info,
29
+ extract_small_model,
30
+ merge,
31
+ show_info,
32
+ )
33
+ from infer.modules.uvr5.modules import uvr
34
+ from infer.modules.vc.modules import VC
35
+ logging.getLogger("numba").setLevel(logging.WARNING)
36
+
37
+ logger = logging.getLogger(__name__)
38
+
39
+ tmp = os.path.join(now_dir, "TEMP")
40
+ shutil.rmtree(tmp, ignore_errors=True)
41
+ shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True)
42
+ shutil.rmtree("%s/runtime/Lib/site-packages/uvr5_pack" % (now_dir), ignore_errors=True)
43
+ os.makedirs(tmp, exist_ok=True)
44
+ os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True)
45
+ os.makedirs(os.path.join(now_dir, "assets/weights"), exist_ok=True)
46
+ os.environ["TEMP"] = tmp
47
+ warnings.filterwarnings("ignore")
48
+ torch.manual_seed(114514)
49
+
50
+
51
+ load_dotenv()
52
+ config = Config()
53
+ vc = VC(config)
54
+
55
+ if config.dml == True:
56
+
57
+ def forward_dml(ctx, x, scale):
58
+ ctx.scale = scale
59
+ res = x.clone().detach()
60
+ return res
61
+
62
+ fairseq.modules.grad_multiply.GradMultiply.forward = forward_dml
63
+ i18n = I18nAuto()
64
+ logger.info(i18n)
65
+ # 判断是否有能用来训练和加速推理的N卡
66
+ ngpu = torch.cuda.device_count()
67
+ gpu_infos = []
68
+ mem = []
69
+ if_gpu_ok = False
70
+
71
+ if torch.cuda.is_available() or ngpu != 0:
72
+ for i in range(ngpu):
73
+ gpu_name = torch.cuda.get_device_name(i)
74
+ if any(
75
+ value in gpu_name.upper()
76
+ for value in [
77
+ "10",
78
+ "16",
79
+ "20",
80
+ "30",
81
+ "40",
82
+ "A2",
83
+ "A3",
84
+ "A4",
85
+ "P4",
86
+ "A50",
87
+ "500",
88
+ "A60",
89
+ "70",
90
+ "80",
91
+ "90",
92
+ "M4",
93
+ "T4",
94
+ "TITAN",
95
+ ]
96
+ ):
97
+ # A10#A100#V100#A40#P40#M40#K80#A4500
98
+ if_gpu_ok = True # 至少有一张能用的N卡
99
+ gpu_infos.append("%s\t%s" % (i, gpu_name))
100
+ mem.append(
101
+ int(
102
+ torch.cuda.get_device_properties(i).total_memory
103
+ / 1024
104
+ / 1024
105
+ / 1024
106
+ + 0.4
107
+ )
108
+ )
109
+ if if_gpu_ok and len(gpu_infos) > 0:
110
+ gpu_info = "\n".join(gpu_infos)
111
+ default_batch_size = min(mem) // 2
112
+ else:
113
+ gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练")
114
+ default_batch_size = 1
115
+ gpus = "-".join([i[0] for i in gpu_infos])
116
+
117
+
118
+ class ToolButton(gr.Button, gr.components.FormComponent):
119
+ """Small button with single emoji as text, fits inside gradio forms"""
120
+
121
+ def __init__(self, **kwargs):
122
+ super().__init__(variant="tool", **kwargs)
123
+
124
+ def get_block_name(self):
125
+ return "button"
126
+
127
+
128
+ weight_root = os.getenv("weight_root")
129
+ weight_uvr5_root = os.getenv("weight_uvr5_root")
130
+ index_root = os.getenv("index_root")
131
+
132
+ names = []
133
+ for name in os.listdir(weight_root):
134
+ if name.endswith(".pth"):
135
+ names.append(name)
136
+ index_paths = []
137
+ for root, dirs, files in os.walk(index_root, topdown=False):
138
+ for name in files:
139
+ if name.endswith(".index") and "trained" not in name:
140
+ index_paths.append("%s/%s" % (root, name))
141
+ uvr5_names = []
142
+ for name in os.listdir(weight_uvr5_root):
143
+ if name.endswith(".pth") or "onnx" in name:
144
+ uvr5_names.append(name.replace(".pth", ""))
145
+
146
+
147
+ def change_choices():
148
+ names = []
149
+ for name in os.listdir(weight_root):
150
+ if name.endswith(".pth"):
151
+ names.append(name)
152
+ index_paths = []
153
+ for root, dirs, files in os.walk(index_root, topdown=False):
154
+ for name in files:
155
+ if name.endswith(".index") and "trained" not in name:
156
+ index_paths.append("%s/%s" % (root, name))
157
+ audio_files=[]
158
+ for filename in os.listdir("./audios"):
159
+ if filename.endswith(('.wav','.mp3','.ogg')):
160
+ audio_files.append('./audios/'+filename)
161
+ return {"choices": sorted(names), "__type__": "update"}, {
162
+ "choices": sorted(index_paths),
163
+ "__type__": "update",
164
+ }, {"choices": sorted(audio_files), "__type__": "update"}
165
+
166
+ def clean():
167
+ return {"value": "", "__type__": "update"}
168
+
169
+
170
+ def export_onnx():
171
+ from infer.modules.onnx.export import export_onnx as eo
172
+
173
+ eo()
174
+
175
+
176
+ sr_dict = {
177
+ "32k": 32000,
178
+ "40k": 40000,
179
+ "48k": 48000,
180
+ }
181
+
182
+
183
+ def if_done(done, p):
184
+ while 1:
185
+ if p.poll() is None:
186
+ sleep(0.5)
187
+ else:
188
+ break
189
+ done[0] = True
190
+
191
+
192
+ def if_done_multi(done, ps):
193
+ while 1:
194
+ # poll==None代表进程未结束
195
+ # 只要有一个进程未结束都不停
196
+ flag = 1
197
+ for p in ps:
198
+ if p.poll() is None:
199
+ flag = 0
200
+ sleep(0.5)
201
+ break
202
+ if flag == 1:
203
+ break
204
+ done[0] = True
205
+
206
+
207
+ def preprocess_dataset(trainset_dir, exp_dir, sr, n_p):
208
+ sr = sr_dict[sr]
209
+ os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
210
+ f = open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "w")
211
+ f.close()
212
+ per = 3.0 if config.is_half else 3.7
213
+ cmd = '"%s" infer/modules/train/preprocess.py "%s" %s %s "%s/logs/%s" %s %.1f' % (
214
+ config.python_cmd,
215
+ trainset_dir,
216
+ sr,
217
+ n_p,
218
+ now_dir,
219
+ exp_dir,
220
+ config.noparallel,
221
+ per,
222
+ )
223
+ logger.info(cmd)
224
+ p = Popen(cmd, shell=True) # , stdin=PIPE, stdout=PIPE,stderr=PIPE,cwd=now_dir
225
+ ###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
226
+ done = [False]
227
+ threading.Thread(
228
+ target=if_done,
229
+ args=(
230
+ done,
231
+ p,
232
+ ),
233
+ ).start()
234
+ while 1:
235
+ with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
236
+ yield (f.read())
237
+ sleep(1)
238
+ if done[0]:
239
+ break
240
+ with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
241
+ log = f.read()
242
+ logger.info(log)
243
+ yield log
244
+
245
+
246
+ # but2.click(extract_f0,[gpus6,np7,f0method8,if_f0_3,trainset_dir4],[info2])
247
+ def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19, gpus_rmvpe):
248
+ gpus = gpus.split("-")
249
+ os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
250
+ f = open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "w")
251
+ f.close()
252
+ if if_f0:
253
+ if f0method != "rmvpe_gpu":
254
+ cmd = (
255
+ '"%s" infer/modules/train/extract/extract_f0_print.py "%s/logs/%s" %s %s'
256
+ % (
257
+ config.python_cmd,
258
+ now_dir,
259
+ exp_dir,
260
+ n_p,
261
+ f0method,
262
+ )
263
+ )
264
+ logger.info(cmd)
265
+ p = Popen(
266
+ cmd, shell=True, cwd=now_dir
267
+ ) # , stdin=PIPE, stdout=PIPE,stderr=PIPE
268
+ ###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
269
+ done = [False]
270
+ threading.Thread(
271
+ target=if_done,
272
+ args=(
273
+ done,
274
+ p,
275
+ ),
276
+ ).start()
277
+ else:
278
+ if gpus_rmvpe != "-":
279
+ gpus_rmvpe = gpus_rmvpe.split("-")
280
+ leng = len(gpus_rmvpe)
281
+ ps = []
282
+ for idx, n_g in enumerate(gpus_rmvpe):
283
+ cmd = (
284
+ '"%s" infer/modules/train/extract/extract_f0_rmvpe.py %s %s %s "%s/logs/%s" %s '
285
+ % (
286
+ config.python_cmd,
287
+ leng,
288
+ idx,
289
+ n_g,
290
+ now_dir,
291
+ exp_dir,
292
+ config.is_half,
293
+ )
294
+ )
295
+ logger.info(cmd)
296
+ p = Popen(
297
+ cmd, shell=True, cwd=now_dir
298
+ ) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
299
+ ps.append(p)
300
+ ###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
301
+ done = [False]
302
+ threading.Thread(
303
+ target=if_done_multi, #
304
+ args=(
305
+ done,
306
+ ps,
307
+ ),
308
+ ).start()
309
+ else:
310
+ cmd = (
311
+ config.python_cmd
312
+ + ' infer/modules/train/extract/extract_f0_rmvpe_dml.py "%s/logs/%s" '
313
+ % (
314
+ now_dir,
315
+ exp_dir,
316
+ )
317
+ )
318
+ logger.info(cmd)
319
+ p = Popen(
320
+ cmd, shell=True, cwd=now_dir
321
+ ) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
322
+ p.wait()
323
+ done = [True]
324
+ while 1:
325
+ with open(
326
+ "%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r"
327
+ ) as f:
328
+ yield (f.read())
329
+ sleep(1)
330
+ if done[0]:
331
+ break
332
+ with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
333
+ log = f.read()
334
+ logger.info(log)
335
+ yield log
336
+ ####对不同part分别开多进程
337
+ """
338
+ n_part=int(sys.argv[1])
339
+ i_part=int(sys.argv[2])
340
+ i_gpu=sys.argv[3]
341
+ exp_dir=sys.argv[4]
342
+ os.environ["CUDA_VISIBLE_DEVICES"]=str(i_gpu)
343
+ """
344
+ leng = len(gpus)
345
+ ps = []
346
+ for idx, n_g in enumerate(gpus):
347
+ cmd = (
348
+ '"%s" infer/modules/train/extract_feature_print.py %s %s %s %s "%s/logs/%s" %s'
349
+ % (
350
+ config.python_cmd,
351
+ config.device,
352
+ leng,
353
+ idx,
354
+ n_g,
355
+ now_dir,
356
+ exp_dir,
357
+ version19,
358
+ )
359
+ )
360
+ logger.info(cmd)
361
+ p = Popen(
362
+ cmd, shell=True, cwd=now_dir
363
+ ) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
364
+ ps.append(p)
365
+ ###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
366
+ done = [False]
367
+ threading.Thread(
368
+ target=if_done_multi,
369
+ args=(
370
+ done,
371
+ ps,
372
+ ),
373
+ ).start()
374
+ while 1:
375
+ with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
376
+ yield (f.read())
377
+ sleep(1)
378
+ if done[0]:
379
+ break
380
+ with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
381
+ log = f.read()
382
+ logger.info(log)
383
+ yield log
384
+
385
+
386
+ def get_pretrained_models(path_str, f0_str, sr2):
387
+ if_pretrained_generator_exist = os.access(
388
+ "assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), os.F_OK
389
+ )
390
+ if_pretrained_discriminator_exist = os.access(
391
+ "assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK
392
+ )
393
+ if not if_pretrained_generator_exist:
394
+ logger.warn(
395
+ "assets/pretrained%s/%sG%s.pth not exist, will not use pretrained model",
396
+ path_str,
397
+ f0_str,
398
+ sr2,
399
+ )
400
+ if not if_pretrained_discriminator_exist:
401
+ logger.warn(
402
+ "assets/pretrained%s/%sD%s.pth not exist, will not use pretrained model",
403
+ path_str,
404
+ f0_str,
405
+ sr2,
406
+ )
407
+ return (
408
+ "assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2)
409
+ if if_pretrained_generator_exist
410
+ else "",
411
+ "assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2)
412
+ if if_pretrained_discriminator_exist
413
+ else "",
414
+ )
415
+
416
+
417
+ def change_sr2(sr2, if_f0_3, version19):
418
+ path_str = "" if version19 == "v1" else "_v2"
419
+ f0_str = "f0" if if_f0_3 else ""
420
+ return get_pretrained_models(path_str, f0_str, sr2)
421
+
422
+
423
+ def change_version19(sr2, if_f0_3, version19):
424
+ path_str = "" if version19 == "v1" else "_v2"
425
+ if sr2 == "32k" and version19 == "v1":
426
+ sr2 = "40k"
427
+ to_return_sr2 = (
428
+ {"choices": ["40k", "48k"], "__type__": "update", "value": sr2}
429
+ if version19 == "v1"
430
+ else {"choices": ["40k", "48k", "32k"], "__type__": "update", "value": sr2}
431
+ )
432
+ f0_str = "f0" if if_f0_3 else ""
433
+ return (
434
+ *get_pretrained_models(path_str, f0_str, sr2),
435
+ to_return_sr2,
436
+ )
437
+
438
+
439
+ def change_f0(if_f0_3, sr2, version19): # f0method8,pretrained_G14,pretrained_D15
440
+ path_str = "" if version19 == "v1" else "_v2"
441
+ return (
442
+ {"visible": if_f0_3, "__type__": "update"},
443
+ *get_pretrained_models(path_str, "f0", sr2),
444
+ )
445
+
446
+
447
+ # but3.click(click_train,[exp_dir1,sr2,if_f0_3,save_epoch10,total_epoch11,batch_size12,if_save_latest13,pretrained_G14,pretrained_D15,gpus16])
448
+ def click_train(
449
+ exp_dir1,
450
+ sr2,
451
+ if_f0_3,
452
+ spk_id5,
453
+ save_epoch10,
454
+ total_epoch11,
455
+ batch_size12,
456
+ if_save_latest13,
457
+ pretrained_G14,
458
+ pretrained_D15,
459
+ gpus16,
460
+ if_cache_gpu17,
461
+ if_save_every_weights18,
462
+ version19,
463
+ ):
464
+ # 生成filelist
465
+ exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
466
+ os.makedirs(exp_dir, exist_ok=True)
467
+ gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir)
468
+ feature_dir = (
469
+ "%s/3_feature256" % (exp_dir)
470
+ if version19 == "v1"
471
+ else "%s/3_feature768" % (exp_dir)
472
+ )
473
+ if if_f0_3:
474
+ f0_dir = "%s/2a_f0" % (exp_dir)
475
+ f0nsf_dir = "%s/2b-f0nsf" % (exp_dir)
476
+ names = (
477
+ set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)])
478
+ & set([name.split(".")[0] for name in os.listdir(feature_dir)])
479
+ & set([name.split(".")[0] for name in os.listdir(f0_dir)])
480
+ & set([name.split(".")[0] for name in os.listdir(f0nsf_dir)])
481
+ )
482
+ else:
483
+ names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set(
484
+ [name.split(".")[0] for name in os.listdir(feature_dir)]
485
+ )
486
+ opt = []
487
+ for name in names:
488
+ if if_f0_3:
489
+ opt.append(
490
+ "%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"
491
+ % (
492
+ gt_wavs_dir.replace("\\", "\\\\"),
493
+ name,
494
+ feature_dir.replace("\\", "\\\\"),
495
+ name,
496
+ f0_dir.replace("\\", "\\\\"),
497
+ name,
498
+ f0nsf_dir.replace("\\", "\\\\"),
499
+ name,
500
+ spk_id5,
501
+ )
502
+ )
503
+ else:
504
+ opt.append(
505
+ "%s/%s.wav|%s/%s.npy|%s"
506
+ % (
507
+ gt_wavs_dir.replace("\\", "\\\\"),
508
+ name,
509
+ feature_dir.replace("\\", "\\\\"),
510
+ name,
511
+ spk_id5,
512
+ )
513
+ )
514
+ fea_dim = 256 if version19 == "v1" else 768
515
+ if if_f0_3:
516
+ for _ in range(2):
517
+ opt.append(
518
+ "%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
519
+ % (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5)
520
+ )
521
+ else:
522
+ for _ in range(2):
523
+ opt.append(
524
+ "%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s"
525
+ % (now_dir, sr2, now_dir, fea_dim, spk_id5)
526
+ )
527
+ shuffle(opt)
528
+ with open("%s/filelist.txt" % exp_dir, "w") as f:
529
+ f.write("\n".join(opt))
530
+ logger.debug("Write filelist done")
531
+ # 生成config#无需生成config
532
+ # cmd = python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e mi-test -sr 40k -f0 1 -bs 4 -g 0 -te 10 -se 5 -pg pretrained/f0G40k.pth -pd pretrained/f0D40k.pth -l 1 -c 0"
533
+ logger.info("Use gpus: %s", str(gpus16))
534
+ if pretrained_G14 == "":
535
+ logger.info("No pretrained Generator")
536
+ if pretrained_D15 == "":
537
+ logger.info("No pretrained Discriminator")
538
+ if version19 == "v1" or sr2 == "40k":
539
+ config_path = "v1/%s.json" % sr2
540
+ else:
541
+ config_path = "v2/%s.json" % sr2
542
+ config_save_path = os.path.join(exp_dir, "config.json")
543
+ if not pathlib.Path(config_save_path).exists():
544
+ with open(config_save_path, "w", encoding="utf-8") as f:
545
+ json.dump(
546
+ config.json_config[config_path],
547
+ f,
548
+ ensure_ascii=False,
549
+ indent=4,
550
+ sort_keys=True,
551
+ )
552
+ f.write("\n")
553
+ if gpus16:
554
+ cmd = (
555
+ '"%s" infer/modules/train/train.py -e "%s" -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s'
556
+ % (
557
+ config.python_cmd,
558
+ exp_dir1,
559
+ sr2,
560
+ 1 if if_f0_3 else 0,
561
+ batch_size12,
562
+ gpus16,
563
+ total_epoch11,
564
+ save_epoch10,
565
+ "-pg %s" % pretrained_G14 if pretrained_G14 != "" else "",
566
+ "-pd %s" % pretrained_D15 if pretrained_D15 != "" else "",
567
+ 1 if if_save_latest13 == i18n("是") else 0,
568
+ 1 if if_cache_gpu17 == i18n("是") else 0,
569
+ 1 if if_save_every_weights18 == i18n("是") else 0,
570
+ version19,
571
+ )
572
+ )
573
+ else:
574
+ cmd = (
575
+ '"%s" infer/modules/train/train.py -e "%s" -sr %s -f0 %s -bs %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s'
576
+ % (
577
+ config.python_cmd,
578
+ exp_dir1,
579
+ sr2,
580
+ 1 if if_f0_3 else 0,
581
+ batch_size12,
582
+ total_epoch11,
583
+ save_epoch10,
584
+ "-pg %s" % pretrained_G14 if pretrained_G14 != "" else "",
585
+ "-pd %s" % pretrained_D15 if pretrained_D15 != "" else "",
586
+ 1 if if_save_latest13 == i18n("是") else 0,
587
+ 1 if if_cache_gpu17 == i18n("是") else 0,
588
+ 1 if if_save_every_weights18 == i18n("是") else 0,
589
+ version19,
590
+ )
591
+ )
592
+ logger.info(cmd)
593
+ p = Popen(cmd, shell=True, cwd=now_dir)
594
+ p.wait()
595
+ return "训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"
596
+
597
+
598
+ # but4.click(train_index, [exp_dir1], info3)
599
+ def train_index(exp_dir1, version19):
600
+ # exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
601
+ exp_dir = "logs/%s" % (exp_dir1)
602
+ os.makedirs(exp_dir, exist_ok=True)
603
+ feature_dir = (
604
+ "%s/3_feature256" % (exp_dir)
605
+ if version19 == "v1"
606
+ else "%s/3_feature768" % (exp_dir)
607
+ )
608
+ if not os.path.exists(feature_dir):
609
+ return "请先进行特征提取!"
610
+ listdir_res = list(os.listdir(feature_dir))
611
+ if len(listdir_res) == 0:
612
+ return "请先进行特征提取!"
613
+ infos = []
614
+ npys = []
615
+ for name in sorted(listdir_res):
616
+ phone = np.load("%s/%s" % (feature_dir, name))
617
+ npys.append(phone)
618
+ big_npy = np.concatenate(npys, 0)
619
+ big_npy_idx = np.arange(big_npy.shape[0])
620
+ np.random.shuffle(big_npy_idx)
621
+ big_npy = big_npy[big_npy_idx]
622
+ if big_npy.shape[0] > 2e5:
623
+ infos.append("Trying doing kmeans %s shape to 10k centers." % big_npy.shape[0])
624
+ yield "\n".join(infos)
625
+ try:
626
+ big_npy = (
627
+ MiniBatchKMeans(
628
+ n_clusters=10000,
629
+ verbose=True,
630
+ batch_size=256 * config.n_cpu,
631
+ compute_labels=False,
632
+ init="random",
633
+ )
634
+ .fit(big_npy)
635
+ .cluster_centers_
636
+ )
637
+ except:
638
+ info = traceback.format_exc()
639
+ logger.info(info)
640
+ infos.append(info)
641
+ yield "\n".join(infos)
642
+
643
+ np.save("%s/total_fea.npy" % exp_dir, big_npy)
644
+ n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
645
+ infos.append("%s,%s" % (big_npy.shape, n_ivf))
646
+ yield "\n".join(infos)
647
+ index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf)
648
+ # index = faiss.index_factory(256if version19=="v1"else 768, "IVF%s,PQ128x4fs,RFlat"%n_ivf)
649
+ infos.append("training")
650
+ yield "\n".join(infos)
651
+ index_ivf = faiss.extract_index_ivf(index) #
652
+ index_ivf.nprobe = 1
653
+ index.train(big_npy)
654
+ faiss.write_index(
655
+ index,
656
+ "%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index"
657
+ % (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
658
+ )
659
+
660
+ infos.append("adding")
661
+ yield "\n".join(infos)
662
+ batch_size_add = 8192
663
+ for i in range(0, big_npy.shape[0], batch_size_add):
664
+ index.add(big_npy[i : i + batch_size_add])
665
+ faiss.write_index(
666
+ index,
667
+ "%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index"
668
+ % (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
669
+ )
670
+ infos.append(
671
+ "成功构建索引,added_IVF%s_Flat_nprobe_%s_%s_%s.index"
672
+ % (n_ivf, index_ivf.nprobe, exp_dir1, version19)
673
+ )
674
+ # faiss.write_index(index, '%s/added_IVF%s_Flat_FastScan_%s.index'%(exp_dir,n_ivf,version19))
675
+ # infos.append("成功构建索引,added_IVF%s_Flat_FastScan_%s.index"%(n_ivf,version19))
676
+ yield "\n".join(infos)
677
+
678
+
679
+ # but5.click(train1key, [exp_dir1, sr2, if_f0_3, trainset_dir4, spk_id5, gpus6, np7, f0method8, save_epoch10, total_epoch11, batch_size12, if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17], info3)
680
+ def train1key(
681
+ exp_dir1,
682
+ sr2,
683
+ if_f0_3,
684
+ trainset_dir4,
685
+ spk_id5,
686
+ np7,
687
+ f0method8,
688
+ save_epoch10,
689
+ total_epoch11,
690
+ batch_size12,
691
+ if_save_latest13,
692
+ pretrained_G14,
693
+ pretrained_D15,
694
+ gpus16,
695
+ if_cache_gpu17,
696
+ if_save_every_weights18,
697
+ version19,
698
+ gpus_rmvpe,
699
+ ):
700
+ infos = []
701
+
702
+ def get_info_str(strr):
703
+ infos.append(strr)
704
+ return "\n".join(infos)
705
+
706
+ ####### step1:处理数据
707
+ yield get_info_str(i18n("step1:正在处理数据"))
708
+ [get_info_str(_) for _ in preprocess_dataset(trainset_dir4, exp_dir1, sr2, np7)]
709
+
710
+ ####### step2a:提取音高
711
+ yield get_info_str(i18n("step2:正在提取音高&正在提取特征"))
712
+ [
713
+ get_info_str(_)
714
+ for _ in extract_f0_feature(
715
+ gpus16, np7, f0method8, if_f0_3, exp_dir1, version19, gpus_rmvpe
716
+ )
717
+ ]
718
+
719
+ ####### step3a:训练模型
720
+ yield get_info_str(i18n("step3a:正在训练模型"))
721
+ click_train(
722
+ exp_dir1,
723
+ sr2,
724
+ if_f0_3,
725
+ spk_id5,
726
+ save_epoch10,
727
+ total_epoch11,
728
+ batch_size12,
729
+ if_save_latest13,
730
+ pretrained_G14,
731
+ pretrained_D15,
732
+ gpus16,
733
+ if_cache_gpu17,
734
+ if_save_every_weights18,
735
+ version19,
736
+ )
737
+ yield get_info_str(i18n("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"))
738
+
739
+ ####### step3b:训练索引
740
+ [get_info_str(_) for _ in train_index(exp_dir1, version19)]
741
+ yield get_info_str(i18n("全流程结束!"))
742
+
743
+
744
+ # ckpt_path2.change(change_info_,[ckpt_path2],[sr__,if_f0__])
745
+ def change_info_(ckpt_path):
746
+ if not os.path.exists(ckpt_path.replace(os.path.basename(ckpt_path), "train.log")):
747
+ return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
748
+ try:
749
+ with open(
750
+ ckpt_path.replace(os.path.basename(ckpt_path), "train.log"), "r"
751
+ ) as f:
752
+ info = eval(f.read().strip("\n").split("\n")[0].split("\t")[-1])
753
+ sr, f0 = info["sample_rate"], info["if_f0"]
754
+ version = "v2" if ("version" in info and info["version"] == "v2") else "v1"
755
+ return sr, str(f0), version
756
+ except:
757
+ traceback.print_exc()
758
+ return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
759
+
760
+
761
+ F0GPUVisible = config.dml == False
762
+
763
+
764
+ def change_f0_method(f0method8):
765
+ if f0method8 == "rmvpe_gpu":
766
+ visible = F0GPUVisible
767
+ else:
768
+ visible = False
769
+ return {"visible": visible, "__type__": "update"}
770
+
771
+ def find_model():
772
+ if len(names) > 0:
773
+ vc.get_vc(sorted(names)[0],None,None)
774
+ return sorted(names)[0]
775
+ else:
776
+ try:
777
+ gr.Info("Do not forget to choose a model.")
778
+ except:
779
+ pass
780
+ return ''
781
+
782
+ def find_audios(index=False):
783
+ audio_files=[]
784
+ if not os.path.exists('./audios'): os.mkdir("./audios")
785
+ for filename in os.listdir("./audios"):
786
+ if filename.endswith(('.wav','.mp3','.ogg')):
787
+ audio_files.append("./audios/"+filename)
788
+ if index:
789
+ if len(audio_files) > 0: return sorted(audio_files)[0]
790
+ else: return ""
791
+ elif len(audio_files) > 0: return sorted(audio_files)
792
+ else: return []
793
+
794
+ def get_index():
795
+ if find_model() != '':
796
+ chosen_model=sorted(names)[0].split(".")[0]
797
+ logs_path="./logs/"+chosen_model
798
+ if os.path.exists(logs_path):
799
+ for file in os.listdir(logs_path):
800
+ if file.endswith(".index"):
801
+ return os.path.join(logs_path, file)
802
+ return ''
803
+ else:
804
+ return ''
805
+
806
+ def get_indexes():
807
+ indexes_list=[]
808
+ for dirpath, dirnames, filenames in os.walk("./logs/"):
809
+ for filename in filenames:
810
+ if filename.endswith(".index"):
811
+ indexes_list.append(os.path.join(dirpath,filename))
812
+ if len(indexes_list) > 0:
813
+ return indexes_list
814
+ else:
815
+ return ''
816
+
817
+ def save_wav(file):
818
+ try:
819
+ file_path=file.name
820
+ shutil.move(file_path,'./audios')
821
+ return './audios/'+os.path.basename(file_path)
822
+ except AttributeError:
823
+ try:
824
+ new_name = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+'.wav'
825
+ new_path='./audios/'+new_name
826
+ shutil.move(file,new_path)
827
+ return new_path
828
+ except TypeError:
829
+ return None
830
+
831
+ def download_from_url(url, model):
832
+ if url == '':
833
+ return "URL cannot be left empty."
834
+ if model =='':
835
+ return "You need to name your model. For example: My-Model"
836
+ url = url.strip()
837
+ zip_dirs = ["zips", "unzips"]
838
+ for directory in zip_dirs:
839
+ if os.path.exists(directory):
840
+ shutil.rmtree(directory)
841
+ os.makedirs("zips", exist_ok=True)
842
+ os.makedirs("unzips", exist_ok=True)
843
+ zipfile = model + '.zip'
844
+ zipfile_path = './zips/' + zipfile
845
+ try:
846
+ if "drive.google.com" in url:
847
+ subprocess.run(["gdown", url, "--fuzzy", "-O", zipfile_path])
848
+ elif "mega.nz" in url:
849
+ m = Mega()
850
+ m.download_url(url, './zips')
851
+ else:
852
+ subprocess.run(["wget", url, "-O", zipfile_path])
853
+ for filename in os.listdir("./zips"):
854
+ if filename.endswith(".zip"):
855
+ zipfile_path = os.path.join("./zips/",filename)
856
+ shutil.unpack_archive(zipfile_path, "./unzips", 'zip')
857
+ else:
858
+ return "No zipfile found."
859
+ for root, dirs, files in os.walk('./unzips'):
860
+ for file in files:
861
+ file_path = os.path.join(root, file)
862
+ if file.endswith(".index"):
863
+ os.mkdir(f'./logs/{model}')
864
+ shutil.copy2(file_path,f'./logs/{model}')
865
+ elif "G_" not in file and "D_" not in file and file.endswith(".pth"):
866
+ shutil.copy(file_path,f'./assets/weights/{model}.pth')
867
+ shutil.rmtree("zips")
868
+ shutil.rmtree("unzips")
869
+ return "Success."
870
+ except:
871
+ return "There's been an error."
872
+
873
+ def upload_to_dataset(files, dir):
874
+ if dir == '':
875
+ dir = './dataset/'+datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
876
+ if not os.path.exists(dir):
877
+ os.makedirs(dir)
878
+ for file in files:
879
+ path=file.name
880
+ shutil.copy2(path,dir)
881
+ try:
882
+ gr.Info(i18n("处理数据"))
883
+ except:
884
+ pass
885
+ return i18n("处理数据"), {"value":dir,"__type__":"update"}
886
+
887
+ def download_model_files(model):
888
+ model_found = False
889
+ index_found = False
890
+ if os.path.exists(f'./assets/weights/{model}.pth'): model_found = True
891
+ if os.path.exists(f'./logs/{model}'):
892
+ for file in os.listdir(f'./logs/{model}'):
893
+ if file.endswith('.index') and 'added' in file:
894
+ log_file = file
895
+ index_found = True
896
+ if model_found and index_found:
897
+ return [f'./assets/weights/{model}.pth', f'./logs/{model}/{log_file}'], "Done"
898
+ elif model_found and not index_found:
899
+ return f'./assets/weights/{model}.pth', "Could not find Index file."
900
+ elif index_found and not model_found:
901
+ return f'./logs/{model}/{log_file}', f'Make sure the Voice Name is correct. I could not find {model}.pth'
902
+ else:
903
+ return None, f'Could not find {model}.pth or corresponding Index file.'
904
+
905
+ with gr.Blocks(title="🔊",theme=gr.themes.Base(primary_hue="rose",neutral_hue="zinc")) as app:
906
+ with gr.Row():
907
+ gr.HTML("<img src='file/a.png' alt='image'>")
908
+ with gr.Tabs():
909
+ with gr.TabItem(i18n("模型推理")):
910
+ with gr.Row():
911
+ sid0 = gr.Dropdown(label=i18n("推理音色"), choices=sorted(names), value=find_model())
912
+ refresh_button = gr.Button(i18n("刷新音色列表和索引路径"), variant="primary")
913
+ #clean_button = gr.Button(i18n("卸载音色省显存"), variant="primary")
914
+ spk_item = gr.Slider(
915
+ minimum=0,
916
+ maximum=2333,
917
+ step=1,
918
+ label=i18n("请选择说话人id"),
919
+ value=0,
920
+ visible=False,
921
+ interactive=True,
922
+ )
923
+ #clean_button.click(
924
+ # fn=clean, inputs=[], outputs=[sid0], api_name="infer_clean"
925
+ #)
926
+ vc_transform0 = gr.Number(
927
+ label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0
928
+ )
929
+ but0 = gr.Button(i18n("转换"), variant="primary")
930
+ with gr.Row():
931
+ with gr.Column():
932
+ with gr.Row():
933
+ dropbox = gr.File(label="Drop your audio here & hit the Reload button.")
934
+ with gr.Row():
935
+ record_button=gr.Audio(source="microphone", label="OR Record audio.", type="filepath")
936
+ with gr.Row():
937
+ input_audio0 = gr.Dropdown(
938
+ label=i18n("输入待处理音频文件路径(默认是正确格式示例)"),
939
+ value=find_audios(True),
940
+ choices=find_audios()
941
+ )
942
+ record_button.change(fn=save_wav, inputs=[record_button], outputs=[input_audio0])
943
+ dropbox.upload(fn=save_wav, inputs=[dropbox], outputs=[input_audio0])
944
+ with gr.Column():
945
+ with gr.Accordion(label=i18n("自动检测index路径,下拉式选择(dropdown)"), open=False):
946
+ file_index2 = gr.Dropdown(
947
+ label=i18n("自动检测index路径,下拉式选择(dropdown)"),
948
+ choices=get_indexes(),
949
+ interactive=True,
950
+ value=get_index()
951
+ )
952
+ index_rate1 = gr.Slider(
953
+ minimum=0,
954
+ maximum=1,
955
+ label=i18n("检索特征占比"),
956
+ value=0.66,
957
+ interactive=True,
958
+ )
959
+ vc_output2 = gr.Audio(label=i18n("输出音频(右下角三个点,点了可以下载)"))
960
+ with gr.Accordion(label=i18n("常规设置"), open=False):
961
+ f0method0 = gr.Radio(
962
+ label=i18n(
963
+ "选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU"
964
+ ),
965
+ choices=["pm", "harvest", "crepe", "rmvpe"]
966
+ if config.dml == False
967
+ else ["pm", "harvest", "rmvpe"],
968
+ value="rmvpe",
969
+ interactive=True,
970
+ )
971
+ filter_radius0 = gr.Slider(
972
+ minimum=0,
973
+ maximum=7,
974
+ label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
975
+ value=3,
976
+ step=1,
977
+ interactive=True,
978
+ )
979
+ resample_sr0 = gr.Slider(
980
+ minimum=0,
981
+ maximum=48000,
982
+ label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
983
+ value=0,
984
+ step=1,
985
+ interactive=True,
986
+ visible=False
987
+ )
988
+ rms_mix_rate0 = gr.Slider(
989
+ minimum=0,
990
+ maximum=1,
991
+ label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"),
992
+ value=0.21,
993
+ interactive=True,
994
+ )
995
+ protect0 = gr.Slider(
996
+ minimum=0,
997
+ maximum=0.5,
998
+ label=i18n(
999
+ "保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能���低索引效果"
1000
+ ),
1001
+ value=0.33,
1002
+ step=0.01,
1003
+ interactive=True,
1004
+ )
1005
+ file_index1 = gr.Textbox(
1006
+ label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
1007
+ value="",
1008
+ interactive=True,
1009
+ visible=False
1010
+ )
1011
+ refresh_button.click(
1012
+ fn=change_choices,
1013
+ inputs=[],
1014
+ outputs=[sid0, file_index2, input_audio0],
1015
+ api_name="infer_refresh",
1016
+ )
1017
+ # file_big_npy1 = gr.Textbox(
1018
+ # label=i18n("特征文件路径"),
1019
+ # value="E:\\codes\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
1020
+ # interactive=True,
1021
+ # )
1022
+ with gr.Row():
1023
+ f0_file = gr.File(label=i18n("F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调"), visible=False)
1024
+ with gr.Row():
1025
+ vc_output1 = gr.Textbox(label=i18n("输出信息"))
1026
+ but0.click(
1027
+ vc.vc_single,
1028
+ [
1029
+ spk_item,
1030
+ input_audio0,
1031
+ vc_transform0,
1032
+ f0_file,
1033
+ f0method0,
1034
+ file_index1,
1035
+ file_index2,
1036
+ # file_big_npy1,
1037
+ index_rate1,
1038
+ filter_radius0,
1039
+ resample_sr0,
1040
+ rms_mix_rate0,
1041
+ protect0,
1042
+ ],
1043
+ [vc_output1, vc_output2],
1044
+ api_name="infer_convert",
1045
+ )
1046
+ with gr.Row():
1047
+ with gr.Accordion(open=False, label=i18n("批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. ")):
1048
+ with gr.Row():
1049
+ opt_input = gr.Textbox(label=i18n("指定输出文件夹"), value="opt")
1050
+ vc_transform1 = gr.Number(
1051
+ label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0
1052
+ )
1053
+ f0method1 = gr.Radio(
1054
+ label=i18n(
1055
+ "选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU"
1056
+ ),
1057
+ choices=["pm", "harvest", "crepe", "rmvpe"]
1058
+ if config.dml == False
1059
+ else ["pm", "harvest", "rmvpe"],
1060
+ value="pm",
1061
+ interactive=True,
1062
+ )
1063
+ with gr.Row():
1064
+ filter_radius1 = gr.Slider(
1065
+ minimum=0,
1066
+ maximum=7,
1067
+ label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
1068
+ value=3,
1069
+ step=1,
1070
+ interactive=True,
1071
+ visible=False
1072
+ )
1073
+ with gr.Row():
1074
+ file_index3 = gr.Textbox(
1075
+ label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
1076
+ value="",
1077
+ interactive=True,
1078
+ visible=False
1079
+ )
1080
+ file_index4 = gr.Dropdown(
1081
+ label=i18n("自动检测index路径,下拉式选择(dropdown)"),
1082
+ choices=sorted(index_paths),
1083
+ interactive=True,
1084
+ visible=False
1085
+ )
1086
+ refresh_button.click(
1087
+ fn=lambda: change_choices()[1],
1088
+ inputs=[],
1089
+ outputs=file_index4,
1090
+ api_name="infer_refresh_batch",
1091
+ )
1092
+ # file_big_npy2 = gr.Textbox(
1093
+ # label=i18n("特征文件路径"),
1094
+ # value="E:\\codes\\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
1095
+ # interactive=True,
1096
+ # )
1097
+ index_rate2 = gr.Slider(
1098
+ minimum=0,
1099
+ maximum=1,
1100
+ label=i18n("检索特征占比"),
1101
+ value=1,
1102
+ interactive=True,
1103
+ visible=False
1104
+ )
1105
+ with gr.Row():
1106
+ resample_sr1 = gr.Slider(
1107
+ minimum=0,
1108
+ maximum=48000,
1109
+ label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
1110
+ value=0,
1111
+ step=1,
1112
+ interactive=True,
1113
+ visible=False
1114
+ )
1115
+ rms_mix_rate1 = gr.Slider(
1116
+ minimum=0,
1117
+ maximum=1,
1118
+ label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"),
1119
+ value=0.21,
1120
+ interactive=True,
1121
+ )
1122
+ protect1 = gr.Slider(
1123
+ minimum=0,
1124
+ maximum=0.5,
1125
+ label=i18n(
1126
+ "保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"
1127
+ ),
1128
+ value=0.33,
1129
+ step=0.01,
1130
+ interactive=True,
1131
+ )
1132
+ with gr.Row():
1133
+ dir_input = gr.Textbox(
1134
+ label=i18n("输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)"),
1135
+ value="./audios",
1136
+ )
1137
+ inputs = gr.File(
1138
+ file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹")
1139
+ )
1140
+ with gr.Row():
1141
+ format1 = gr.Radio(
1142
+ label=i18n("导出文件格式"),
1143
+ choices=["wav", "flac", "mp3", "m4a"],
1144
+ value="wav",
1145
+ interactive=True,
1146
+ )
1147
+ but1 = gr.Button(i18n("转换"), variant="primary")
1148
+ vc_output3 = gr.Textbox(label=i18n("输出信息"))
1149
+ but1.click(
1150
+ vc.vc_multi,
1151
+ [
1152
+ spk_item,
1153
+ dir_input,
1154
+ opt_input,
1155
+ inputs,
1156
+ vc_transform1,
1157
+ f0method1,
1158
+ file_index1,
1159
+ file_index2,
1160
+ # file_big_npy2,
1161
+ index_rate1,
1162
+ filter_radius1,
1163
+ resample_sr1,
1164
+ rms_mix_rate1,
1165
+ protect1,
1166
+ format1,
1167
+ ],
1168
+ [vc_output3],
1169
+ api_name="infer_convert_batch",
1170
+ )
1171
+ sid0.change(
1172
+ fn=vc.get_vc,
1173
+ inputs=[sid0, protect0, protect1],
1174
+ outputs=[spk_item, protect0, protect1, file_index2, file_index4],
1175
+ )
1176
+ with gr.TabItem("Download Model"):
1177
+ with gr.Row():
1178
+ url=gr.Textbox(label="Enter the URL to the Model:")
1179
+ with gr.Row():
1180
+ model = gr.Textbox(label="Name your model:")
1181
+ download_button=gr.Button("Download")
1182
+ with gr.Row():
1183
+ status_bar=gr.Textbox(label="")
1184
+ download_button.click(fn=download_from_url, inputs=[url, model], outputs=[status_bar])
1185
+ with gr.Row():
1186
+ gr.Markdown(
1187
+ """
1188
+ ❤️ If you use this and like it, help me keep it.❤️
1189
+ https://paypal.me/lesantillan
1190
+ """
1191
+ )
1192
+ with gr.TabItem(i18n("训练")):
1193
+ with gr.Row():
1194
+ with gr.Column():
1195
+ exp_dir1 = gr.Textbox(label=i18n("输入实验名"), value="My-Voice")
1196
+ np7 = gr.Slider(
1197
+ minimum=0,
1198
+ maximum=config.n_cpu,
1199
+ step=1,
1200
+ label=i18n("提取音高和处理数据使用的CPU进程数"),
1201
+ value=int(np.ceil(config.n_cpu / 1.5)),
1202
+ interactive=True,
1203
+ )
1204
+ sr2 = gr.Radio(
1205
+ label=i18n("目标采样率"),
1206
+ choices=["40k", "48k"],
1207
+ value="40k",
1208
+ interactive=True,
1209
+ visible=False
1210
+ )
1211
+ if_f0_3 = gr.Radio(
1212
+ label=i18n("模型是否带音高指导(唱歌一定要, 语音可以不要)"),
1213
+ choices=[True, False],
1214
+ value=True,
1215
+ interactive=True,
1216
+ visible=False
1217
+ )
1218
+ version19 = gr.Radio(
1219
+ label=i18n("版本"),
1220
+ choices=["v1", "v2"],
1221
+ value="v2",
1222
+ interactive=True,
1223
+ visible=False,
1224
+ )
1225
+ trainset_dir4 = gr.Textbox(
1226
+ label=i18n("输入训练文件夹路径"), value='./dataset/'+datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
1227
+ )
1228
+ easy_uploader = gr.Files(label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹"),file_types=['audio'])
1229
+ but1 = gr.Button(i18n("处理数据"), variant="primary")
1230
+ info1 = gr.Textbox(label=i18n("输出信息"), value="")
1231
+ easy_uploader.upload(fn=upload_to_dataset, inputs=[easy_uploader, trainset_dir4], outputs=[info1, trainset_dir4])
1232
+ gpus6 = gr.Textbox(
1233
+ label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"),
1234
+ value=gpus,
1235
+ interactive=True,
1236
+ visible=F0GPUVisible,
1237
+ )
1238
+ gpu_info9 = gr.Textbox(
1239
+ label=i18n("显卡信息"), value=gpu_info, visible=F0GPUVisible
1240
+ )
1241
+ spk_id5 = gr.Slider(
1242
+ minimum=0,
1243
+ maximum=4,
1244
+ step=1,
1245
+ label=i18n("请指定说话人id"),
1246
+ value=0,
1247
+ interactive=True,
1248
+ visible=False
1249
+ )
1250
+ but1.click(
1251
+ preprocess_dataset,
1252
+ [trainset_dir4, exp_dir1, sr2, np7],
1253
+ [info1],
1254
+ api_name="train_preprocess",
1255
+ )
1256
+ with gr.Column():
1257
+ f0method8 = gr.Radio(
1258
+ label=i18n(
1259
+ "选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢,rmvpe效果最好且微吃CPU/GPU"
1260
+ ),
1261
+ choices=["pm", "harvest", "dio", "rmvpe", "rmvpe_gpu"],
1262
+ value="rmvpe_gpu",
1263
+ interactive=True,
1264
+ )
1265
+ gpus_rmvpe = gr.Textbox(
1266
+ label=i18n(
1267
+ "rmvpe卡号配置:以-分隔输入使用的不同进程卡号,例如0-0-1使用在卡0上跑2个进程并在卡1上跑1个进程"
1268
+ ),
1269
+ value="%s-%s" % (gpus, gpus),
1270
+ interactive=True,
1271
+ visible=F0GPUVisible,
1272
+ )
1273
+ but2 = gr.Button(i18n("特征提取"), variant="primary")
1274
+ info2 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
1275
+ f0method8.change(
1276
+ fn=change_f0_method,
1277
+ inputs=[f0method8],
1278
+ outputs=[gpus_rmvpe],
1279
+ )
1280
+ but2.click(
1281
+ extract_f0_feature,
1282
+ [
1283
+ gpus6,
1284
+ np7,
1285
+ f0method8,
1286
+ if_f0_3,
1287
+ exp_dir1,
1288
+ version19,
1289
+ gpus_rmvpe,
1290
+ ],
1291
+ [info2],
1292
+ api_name="train_extract_f0_feature",
1293
+ )
1294
+ with gr.Column():
1295
+ total_epoch11 = gr.Slider(
1296
+ minimum=2,
1297
+ maximum=1000,
1298
+ step=1,
1299
+ label=i18n("总训练轮数total_epoch"),
1300
+ value=150,
1301
+ interactive=True,
1302
+ )
1303
+ gpus16 = gr.Textbox(
1304
+ label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"),
1305
+ value="0",
1306
+ interactive=True,
1307
+ visible=True
1308
+ )
1309
+ but3 = gr.Button(i18n("训练模型"), variant="primary")
1310
+ but4 = gr.Button(i18n("训练特征索引"), variant="primary")
1311
+ info3 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=10)
1312
+ with gr.Accordion(label=i18n("常规设置"), open=False):
1313
+ save_epoch10 = gr.Slider(
1314
+ minimum=1,
1315
+ maximum=50,
1316
+ step=1,
1317
+ label=i18n("保存频率save_every_epoch"),
1318
+ value=25,
1319
+ interactive=True,
1320
+ )
1321
+ batch_size12 = gr.Slider(
1322
+ minimum=1,
1323
+ maximum=40,
1324
+ step=1,
1325
+ label=i18n("每张显卡的batch_size"),
1326
+ value=default_batch_size,
1327
+ interactive=True,
1328
+ )
1329
+ if_save_latest13 = gr.Radio(
1330
+ label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"),
1331
+ choices=[i18n("是"), i18n("否")],
1332
+ value=i18n("是"),
1333
+ interactive=True,
1334
+ visible=False
1335
+ )
1336
+ if_cache_gpu17 = gr.Radio(
1337
+ label=i18n(
1338
+ "是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速"
1339
+ ),
1340
+ choices=[i18n("是"), i18n("否")],
1341
+ value=i18n("否"),
1342
+ interactive=True,
1343
+ )
1344
+ if_save_every_weights18 = gr.Radio(
1345
+ label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"),
1346
+ choices=[i18n("是"), i18n("否")],
1347
+ value=i18n("是"),
1348
+ interactive=True,
1349
+ )
1350
+ with gr.Row():
1351
+ download_model = gr.Button('5.Download Model')
1352
+ with gr.Row():
1353
+ model_files = gr.Files(label='Your Model and Index file can be downloaded here:')
1354
+ download_model.click(fn=download_model_files, inputs=[exp_dir1], outputs=[model_files, info3])
1355
+ with gr.Row():
1356
+ pretrained_G14 = gr.Textbox(
1357
+ label=i18n("加载预训练底模G路径"),
1358
+ value="assets/pretrained_v2/f0G40k.pth",
1359
+ interactive=True,
1360
+ visible=False
1361
+ )
1362
+ pretrained_D15 = gr.Textbox(
1363
+ label=i18n("加载预训练底模D路径"),
1364
+ value="assets/pretrained_v2/f0D40k.pth",
1365
+ interactive=True,
1366
+ visible=False
1367
+ )
1368
+ sr2.change(
1369
+ change_sr2,
1370
+ [sr2, if_f0_3, version19],
1371
+ [pretrained_G14, pretrained_D15],
1372
+ )
1373
+ version19.change(
1374
+ change_version19,
1375
+ [sr2, if_f0_3, version19],
1376
+ [pretrained_G14, pretrained_D15, sr2],
1377
+ )
1378
+ if_f0_3.change(
1379
+ change_f0,
1380
+ [if_f0_3, sr2, version19],
1381
+ [f0method8, pretrained_G14, pretrained_D15],
1382
+ )
1383
+ with gr.Row():
1384
+ but5 = gr.Button(i18n("一键训练"), variant="primary", visible=False)
1385
+ but3.click(
1386
+ click_train,
1387
+ [
1388
+ exp_dir1,
1389
+ sr2,
1390
+ if_f0_3,
1391
+ spk_id5,
1392
+ save_epoch10,
1393
+ total_epoch11,
1394
+ batch_size12,
1395
+ if_save_latest13,
1396
+ pretrained_G14,
1397
+ pretrained_D15,
1398
+ gpus16,
1399
+ if_cache_gpu17,
1400
+ if_save_every_weights18,
1401
+ version19,
1402
+ ],
1403
+ info3,
1404
+ api_name="train_start",
1405
+ )
1406
+ but4.click(train_index, [exp_dir1, version19], info3)
1407
+ but5.click(
1408
+ train1key,
1409
+ [
1410
+ exp_dir1,
1411
+ sr2,
1412
+ if_f0_3,
1413
+ trainset_dir4,
1414
+ spk_id5,
1415
+ np7,
1416
+ f0method8,
1417
+ save_epoch10,
1418
+ total_epoch11,
1419
+ batch_size12,
1420
+ if_save_latest13,
1421
+ pretrained_G14,
1422
+ pretrained_D15,
1423
+ gpus16,
1424
+ if_cache_gpu17,
1425
+ if_save_every_weights18,
1426
+ version19,
1427
+ gpus_rmvpe,
1428
+ ],
1429
+ info3,
1430
+ api_name="train_start_all",
1431
+ )
1432
+
1433
+ if config.iscolab:
1434
+ app.queue(concurrency_count=511, max_size=1022).launch(share=True)
1435
+ else:
1436
+ app.queue(concurrency_count=511, max_size=1022).launch(
1437
+ server_name="0.0.0.0",
1438
+ inbrowser=not config.noautoopen,
1439
+ server_port=config.listen_port,
1440
+ quiet=True,
1441
+ )