--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ base_model: - Laxhar/sdxl_noob language: - en tags: - stable-diffusion - sdxl --- # Hikari Noob v-pred 0.5 ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/630e2d981ef92d4e37a1694e/b9tyKyu2MwbQTQpuqAg2c.jpeg) Civitai model page: https://civitai.com/models/938672 Fine-tuned NoobAI-XL(v-prediction) and merged SPO LoRA NoobAI-XL(v-prediction)をファインチューンし、SPOをマージしました。 ## Features/特徴 - Improved stability and quality. - Works with samplers other than Euler. - Good results with only 10 steps (12 steps or more recommended) - Fixed a problem in which the quality of output was significantly degraded when the number of tokens exceeded 76. - The base style is not strong and can be restyled by prompts or LoRAs. - 安定性と品質を改善 - わずか10ステップでよい結果を得られます(ただし12ステップ以上を推奨) - Zero Terminal SNRの代わりにNoise Offsetを使用することでEuler以外のサンプラーでも利用できるようにしました。 - トークン数が76を超えると出力の品質が著しく低下する問題を修正しました。 - 素の画風は強くないので、プロンプトやLoRAによる画風変更ができます。 ## Requirements / 動作要件 - AUTOMATIC1111 WebUI on `dev` branch / devブランチ上のAUTOMATIC1111 WebUI - Latest version of ComfyUI / 最新版のComfyUI - Latest version of Forge or reForge / 最新版のForgeまたはreForge ### Instruction for AUTOMATIC1111 / AUTOMATIC1111の導入手順 1. Switch branch to `dev` (Run this command in the root directory of the webui: `git checkout -b dev origin/dev` or use Github Desktop) 2. Use the model as usual! (日本語) 1. `dev`ブランチに切り替えます(次のコマンドをwebui直下で実行します: `git checkout -b dev origin/dev` またはGithub Desktopを使う) 2. 通常通りモデルを使用します。 ### Example Workflow for ComfyUI / ComfyUIサンプルワークフロー Download it from [here](https://files.catbox.moe/83e2wl.json) ## Prompt Guidelines / プロンプト記法 Almost same as the base model/ベースモデルとおおむね同じ To improve the quality of background, add `simple background, transparent background` to Negative Prompt. ## Recommended Prompt / 推奨プロンプト Positive: None/無し(Works good without `masterpiece, best quality` / `masterpiece, best quality`無しでおk) Negative: `worst quality, low quality, bad quality, lowres, jpeg artifacts, unfinished, photoshop \(medium\), abstract` or empty(または無し) ## Recommended Settings / 推奨設定 Steps: 10-24 Sampler: DPM++ 2M(dpmpp_2m) Scheduler: Simple Guidance Scale: 3.5-7 ### Hires.fix Hires upscaler: 4x-UltraSharp or Latent(nearest-exact) Denoising strength: 0.4-0.5(0.65-0.7 for latent) ## Merge recipe(Weighted sum) I made 6 Illustrious-based models and merged them. - Stage 0: finetunes v-pred test model with AI-generated images - Stage 1: finetunes stage 0 model with 300 scenery images from Gelbooru - Stage 2: Finetune and merge(see below) *A-F,sd15: finetuned stage1(ReLoRA) - A * 0.6 + B * 0.4 = tmp1 - tmp1 * 0.6 + C * 0.4 = tmp2 - tmp2 * 0.7 + F * 0.3 = tmp3 - tmp3 * 0.7 + E * 0.3 = tmp4 - tmp4 * 0.5 + D * 0.5 = tmp5 - tmp5 * 0.65 + sd15 * 0.35 = tmp6 - tmp6 + SPO LoRA = Result ## Training scripts: [sd-scripts](https://github.com/kohya-ss/sd-scripts) ## Notice This model is licensed under [Fair AI Public License 1.0-SD](https://freedevproject.org/faipl-1.0-sd/) If you make modify this model, you must share both your changes and the original license. You are prohibited from monetizing any close-sourced fine-tuned / merged model, which disallows the public from accessing the model's source code / weights and its usages.