--- license: apache-2.0 base_model: allenai/led-base-16384 tags: - generated_from_trainer datasets: - xlsum-fi model-index: - name: allenai/led-base-16384 results: [] --- # allenai/led-base-16384 This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co./allenai/led-base-16384) on the xlsum-fi dataset. It achieves the following results on the evaluation set: - Loss: 3.3962 - Rouge2 Precision: 0.0109 - Rouge2 Recall: 0.0248 - Rouge2 Fmeasure: 0.0152 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:| | 3.8391 | 0.32 | 10 | 3.5714 | 0.0062 | 0.016 | 0.0089 | | 3.8 | 0.64 | 20 | 3.4777 | 0.0083 | 0.0202 | 0.0115 | | 3.6502 | 0.96 | 30 | 3.3962 | 0.0109 | 0.0248 | 0.0152 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1