FredrikMoller
commited on
Commit
·
05d8bea
1
Parent(s):
b692d45
first release of the fear target model
Browse files- README.md +52 -0
- config.json +36 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tf_model.h5 +3 -0
- tokenizer_config.json +1 -0
- trainer_state.json +133 -0
- training_args.bin +3 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: sv
|
3 |
+
license: mit
|
4 |
+
---
|
5 |
+
|
6 |
+
## Swedish BERT models for sentiment analysis, Sentiment targets.
|
7 |
+
[Recorded Future](https://www.recordedfuture.com/) together with [AI Sweden](https://www.ai.se/en) releases two language models for target/role assignment in Swedish. The two models are based on the [KB/bert-base-swedish-cased](https://huggingface.co/KB/bert-base-swedish-cased), the models as has been fine tuned to solve a Named Entety Recognition(NER) token classification task.
|
8 |
+
|
9 |
+
This is a downstream model to be used in conjunction with the [Swedish violence sentiment classifier](https://huggingface.co/RecordedFuture/Swedish-Sentiment-Violence) or [Swedish violence sentiment classifier](https://huggingface.co/RecordedFuture/Swedish-Sentiment-Fear). The models are trained to tag parts of sentences that has recieved a positive classification from the upstream sentiment classifier. The model will tag parts of sentences that contains the targets that the upstream model has activated on.
|
10 |
+
|
11 |
+
The NER sentiment target models do work as standalone models but their recommended application is downstreamfrom a sentence classification model.
|
12 |
+
|
13 |
+
The models are only trained on Swedish data and only supports inference of Swedish input texts. The models inference metrics for all non-Swedish inputs are not defined, these inputs are considered as out of domain data.
|
14 |
+
|
15 |
+
The current models are supported at Transformers version >= 4.3.3 and Torch version 1.8.0, compatibility with older versions are not verified.
|
16 |
+
|
17 |
+
### Fear targets
|
18 |
+
|
19 |
+
The model can be imported from the transformers library by running
|
20 |
+
|
21 |
+
from transformers import BertForSequenceClassification, BertTokenizerFast
|
22 |
+
|
23 |
+
tokenizer = BertTokenizerFast.from_pretrained("RecordedFuture/Swedish-Sentiment-Fear-Targets")
|
24 |
+
classifier_fear_targets= BertForTokenClassification.from_pretrained("RecordedFuture/Swedish-Sentiment-Fear-Targets")
|
25 |
+
|
26 |
+
When the model and tokenizer are initialized the model can be used for inference.
|
27 |
+
|
28 |
+
#### Verification metrics
|
29 |
+
|
30 |
+
During training the Fear target model had the following verification metrics when using "any overlap" as the evaluation metric.
|
31 |
+
|
32 |
+
|
33 |
+
| F-score | Precision | Recall |
|
34 |
+
|:-------------------------:|:-------:|:---------:|:------:|
|
35 |
+
| 0.8361 | 0.7903 | 0.8876 |
|
36 |
+
|
37 |
+
#### Swedish-Sentiment-Violence
|
38 |
+
The model be can imported from the transformers library by running
|
39 |
+
|
40 |
+
from transformers import BertForSequenceClassification, BertTokenizerFast
|
41 |
+
|
42 |
+
tokenizer = BertTokenizerFast.from_pretrained("RecordedFuture/Swedish-Sentiment-Violence-Targets")
|
43 |
+
classifier_violence_targets = BertForTokenClassification.from_pretrained("RecordedFuture/Swedish-Sentiment-Violence-Targets")
|
44 |
+
|
45 |
+
When the model and tokenizer are initialized the model can be used for inference.
|
46 |
+
|
47 |
+
#### Verification metrics
|
48 |
+
During training the Violence target model had the following verification metrics when using "any overlap" as the evaluation metric.
|
49 |
+
|
50 |
+
| F-score | Precision | Recall |
|
51 |
+
|:-------------------------:|:-------:|:---------:|:------:|
|
52 |
+
| 0.7831| 0.9155| 0.8442 |
|
config.json
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "RecordedFuture/Swedish-Sentiment-Fear-Targets",
|
3 |
+
"architectures": [
|
4 |
+
"BertForTokenClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"finetuning_task": "ner",
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"id2label": {
|
13 |
+
"0": "LABEL_0",
|
14 |
+
"1": "LABEL_1",
|
15 |
+
"2": "LABEL_2"
|
16 |
+
},
|
17 |
+
"initializer_range": 0.02,
|
18 |
+
"intermediate_size": 3072,
|
19 |
+
"label2id": {
|
20 |
+
"LABEL_0": 0,
|
21 |
+
"LABEL_1": 1,
|
22 |
+
"LABEL_2": 2
|
23 |
+
},
|
24 |
+
"layer_norm_eps": 1e-12,
|
25 |
+
"max_position_embeddings": 512,
|
26 |
+
"model_type": "bert",
|
27 |
+
"num_attention_heads": 12,
|
28 |
+
"num_hidden_layers": 12,
|
29 |
+
"output_past": true,
|
30 |
+
"pad_token_id": 0,
|
31 |
+
"position_embedding_type": "absolute",
|
32 |
+
"transformers_version": "4.5.1",
|
33 |
+
"type_vocab_size": 2,
|
34 |
+
"use_cache": true,
|
35 |
+
"vocab_size": 50325
|
36 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ebe777c682a3a598a057bbb64f0c52b391b86a2b9d2b20e5392a0fdb6a35dc1e
|
3 |
+
size 496497168
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tf_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c97f63693224faa166de0721ed1d2024098fb92579ea3ba7d4f471adbb318ff
|
3 |
+
size 496679008
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": false, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": false, "special_tokens_map_file": "/home/fmoller/.cache/huggingface/transformers/37f2eab7cd9b3716ce0160ea9562138ae9247fb3ea61a2fd0190b16d0970444e.dd8bd9bfd3664b530ea4e645105f557769387b3da9f79bdb55ed556bdd80611d", "name_or_path": "KB/bert-base-swedish-cased", "do_basic_tokenize": true, "never_split": null}
|
trainer_state.json
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 10.0,
|
5 |
+
"global_step": 320,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 1.0,
|
12 |
+
"eval_accuracy": 0.8748680042238648,
|
13 |
+
"eval_f1": 0.0,
|
14 |
+
"eval_loss": 0.616299569606781,
|
15 |
+
"eval_precision": 0.0,
|
16 |
+
"eval_recall": 0.0,
|
17 |
+
"eval_runtime": 0.1116,
|
18 |
+
"eval_samples_per_second": 815.287,
|
19 |
+
"step": 32
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"epoch": 2.0,
|
23 |
+
"eval_accuracy": 0.8785638859556494,
|
24 |
+
"eval_f1": 0.0,
|
25 |
+
"eval_loss": 0.4105246365070343,
|
26 |
+
"eval_precision": 0.0,
|
27 |
+
"eval_recall": 0.0,
|
28 |
+
"eval_runtime": 0.1118,
|
29 |
+
"eval_samples_per_second": 814.082,
|
30 |
+
"step": 64
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 3.0,
|
34 |
+
"eval_accuracy": 0.883843717001056,
|
35 |
+
"eval_f1": 0.3583333333333333,
|
36 |
+
"eval_loss": 0.328654408454895,
|
37 |
+
"eval_precision": 0.4387755102040816,
|
38 |
+
"eval_recall": 0.3028169014084507,
|
39 |
+
"eval_runtime": 0.1118,
|
40 |
+
"eval_samples_per_second": 814.03,
|
41 |
+
"step": 96
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"epoch": 4.0,
|
45 |
+
"eval_accuracy": 0.8912354804646251,
|
46 |
+
"eval_f1": 0.36909871244635195,
|
47 |
+
"eval_loss": 0.31546750664711,
|
48 |
+
"eval_precision": 0.4725274725274725,
|
49 |
+
"eval_recall": 0.3028169014084507,
|
50 |
+
"eval_runtime": 0.1118,
|
51 |
+
"eval_samples_per_second": 813.707,
|
52 |
+
"step": 128
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 5.0,
|
56 |
+
"eval_accuracy": 0.8933474128827877,
|
57 |
+
"eval_f1": 0.41538461538461535,
|
58 |
+
"eval_loss": 0.3068830370903015,
|
59 |
+
"eval_precision": 0.4576271186440678,
|
60 |
+
"eval_recall": 0.38028169014084506,
|
61 |
+
"eval_runtime": 0.1247,
|
62 |
+
"eval_samples_per_second": 730.008,
|
63 |
+
"step": 160
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 6.0,
|
67 |
+
"eval_accuracy": 0.8912354804646251,
|
68 |
+
"eval_f1": 0.48135593220338985,
|
69 |
+
"eval_loss": 0.330695241689682,
|
70 |
+
"eval_precision": 0.46405228758169936,
|
71 |
+
"eval_recall": 0.5,
|
72 |
+
"eval_runtime": 0.1127,
|
73 |
+
"eval_samples_per_second": 807.78,
|
74 |
+
"step": 192
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 7.0,
|
78 |
+
"eval_accuracy": 0.895987328405491,
|
79 |
+
"eval_f1": 0.4470588235294118,
|
80 |
+
"eval_loss": 0.3800097107887268,
|
81 |
+
"eval_precision": 0.504424778761062,
|
82 |
+
"eval_recall": 0.4014084507042254,
|
83 |
+
"eval_runtime": 0.1125,
|
84 |
+
"eval_samples_per_second": 808.798,
|
85 |
+
"step": 224
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"epoch": 8.0,
|
89 |
+
"eval_accuracy": 0.899155227032735,
|
90 |
+
"eval_f1": 0.49295774647887325,
|
91 |
+
"eval_loss": 0.4225572347640991,
|
92 |
+
"eval_precision": 0.49295774647887325,
|
93 |
+
"eval_recall": 0.49295774647887325,
|
94 |
+
"eval_runtime": 0.1126,
|
95 |
+
"eval_samples_per_second": 808.356,
|
96 |
+
"step": 256
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"epoch": 9.0,
|
100 |
+
"eval_accuracy": 0.8922914466737064,
|
101 |
+
"eval_f1": 0.4901960784313726,
|
102 |
+
"eval_loss": 0.4346790611743927,
|
103 |
+
"eval_precision": 0.4573170731707317,
|
104 |
+
"eval_recall": 0.528169014084507,
|
105 |
+
"eval_runtime": 0.1123,
|
106 |
+
"eval_samples_per_second": 810.599,
|
107 |
+
"step": 288
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 10.0,
|
111 |
+
"eval_accuracy": 0.8870116156282999,
|
112 |
+
"eval_f1": 0.47647058823529415,
|
113 |
+
"eval_loss": 0.48350322246551514,
|
114 |
+
"eval_precision": 0.4090909090909091,
|
115 |
+
"eval_recall": 0.5704225352112676,
|
116 |
+
"eval_runtime": 0.1129,
|
117 |
+
"eval_samples_per_second": 805.916,
|
118 |
+
"step": 320
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"epoch": 10.0,
|
122 |
+
"step": 320,
|
123 |
+
"total_flos": 201896658999468.0,
|
124 |
+
"train_runtime": 25.0952,
|
125 |
+
"train_samples_per_second": 12.751
|
126 |
+
}
|
127 |
+
],
|
128 |
+
"max_steps": 320,
|
129 |
+
"num_train_epochs": 10,
|
130 |
+
"total_flos": 201896658999468.0,
|
131 |
+
"trial_name": null,
|
132 |
+
"trial_params": null
|
133 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5efba65dce7e58ef6178bdbdcc23181aa0f6093ee3c26463e169b74b62b6ea48
|
3 |
+
size 2351
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|