File size: 2,832 Bytes
be6a0c8 faf27a2 be6a0c8 faf27a2 be6a0c8 030cfe1 46dc872 030cfe1 faf27a2 030cfe1 be6a0c8 030cfe1 be6a0c8 030cfe1 be6a0c8 ea419e0 be6a0c8 030cfe1 be6a0c8 ea419e0 be6a0c8 030cfe1 be6a0c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
base_model: openai/whisper-large-v3
model-index:
- name: whisper_final
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ꡬμμ₯μ νμλ₯Ό μν μμ±μΈμ λͺ¨λΈ
## νλ‘μ νΈ μ 보
μ¬λ¨λ²μΈ λ―Έλμ μννΈμ¨μ΄μ ν¨κ»νλ μ 3νμμ΄λμ΄ κ³΅λͺ¨μ
## νλ‘μ νΈ λͺ
"ꡬμμ₯μ μμ± λ°μ΄ν°λ₯Ό νμ©ν κ³ λ Ή νμμ μμ¬μν΅ κ°μ λ°©μ"
## λͺ¨λΈ μ€λͺ
- **openai/whisper-large-v3**μ λν νμΈνλ λͺ¨λΈ
- λ³Έ λͺ¨λΈμ "ꡬμμ₯μ μμ± λ°μ΄ν°λ₯Ό νμ©ν κ³ λ Ή νμμ μμ¬μν΅ κ°μ λ°©μ" νλ‘μ νΈμ ꡬμμ₯μ νμλ€μ λν νκ΅μ΄ μμ±μΈμ λͺ¨λΈμ. OpenAIμ Whisper λͺ¨λΈμ νμΈνλ νμ¬ κ΅¬μμ₯μ μ μμ±μ νΉμ±μ λ°μν λͺ¨λΈμ ꡬμΆνμμ.
- μ€λ₯Έμͺ½ "Inference API"λ₯Ό ν΅ν΄ μμ±μΈμ λͺ¨λΈμ ν
μ€νΈ ν΄λ³Ό μ μμ΅λλ€.
## νμ΅ λͺ¨λΈ
- **Paper**: Radford, A., Kim, J. W., Xu, T., Brockman, G., McLeavey, C., & Sutskever, I. (2023, July). Robust speech recognition via large-scale weak supervision. In International Conference on Machine Learning (pp. 28492-28518). PMLR.
- **URL**: https://proceedings.mlr.press/v202/radford23a.html
## νμ΅ λ°μ΄ν°
- **AIHub** "ꡬμμ₯μ μμ± λ°μ΄ν°" (KOR)
- **URL**: https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=data&dataSetSn=608
### νμ΅ νλΌλ―Έν°
- **learning_rate**: 5e-07
- **train_batch_size**: 8
- **eval_batch_size**: 8
- **seed**: 42
- **optimizer**: Adam with betas=(0.9,0.999) and epsilon=1e-08
- **lr_scheduler_type**: linear
- **lr_scheduler_warmup_steps**: 10
- **mixed_precision_training**: Native AMP
### νμ΅ κ²°κ³Ό
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 4.2932 | 0.09 | 10 | 4.6306 | 16.0442 |
| 4.2744 | 0.18 | 20 | 4.1942 | 16.2348 |
| 3.7418 | 0.27 | 30 | 3.7625 | 15.5107 |
| 3.2037 | 0.36 | 40 | 3.5635 | 14.6723 |
| 3.4714 | 0.45 | 50 | 3.4383 | 14.3674 |
| 2.8962 | 0.55 | 60 | 3.3494 | 14.1768 |
| 2.7958 | 0.64 | 70 | 3.2752 | 18.2927 |
| 2.8691 | 0.73 | 80 | 3.2208 | 19.5884 |
| 2.8693 | 0.82 | 90 | 3.1857 | 20.6174 |
| 2.9474 | 0.91 | 100 | 3.1644 | 20.6555 |
| 3.1712 | 1.0 | 110 | 3.1551 | 20.6174 |
### Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
|