RayyanAhmed9477 commited on
Commit
0566aed
·
verified ·
1 Parent(s): 83745ab

Training Script and Readability

Browse files
Files changed (1) hide show
  1. README.md +149 -138
README.md CHANGED
@@ -1,199 +1,210 @@
1
- ---
2
- library_name: transformers
3
- tags: []
4
- ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
 
82
- [More Information Needed]
83
 
84
- ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
 
 
87
 
88
- #### Preprocessing [optional]
89
 
90
- [More Information Needed]
91
 
 
 
 
 
92
 
93
- #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
 
97
- #### Speeds, Sizes, Times [optional]
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
 
101
- [More Information Needed]
102
 
103
- ## Evaluation
 
 
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
 
107
- ### Testing Data, Factors & Metrics
 
108
 
109
- #### Testing Data
 
 
 
 
 
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
 
 
 
 
 
112
 
113
- [More Information Needed]
 
 
 
114
 
115
- #### Factors
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
 
119
- [More Information Needed]
120
 
121
- #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
 
 
124
 
125
- [More Information Needed]
126
 
127
- ### Results
128
 
129
- [More Information Needed]
130
 
131
- #### Summary
 
 
 
 
 
132
 
 
133
 
 
 
 
 
134
 
135
- ## Model Examination [optional]
 
 
 
 
 
 
136
 
137
- <!-- Relevant interpretability work for the model goes here -->
 
138
 
139
- [More Information Needed]
 
 
 
 
 
 
 
 
 
140
 
141
- ## Environmental Impact
 
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
 
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
 
 
 
 
 
 
 
 
 
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
- ### Model Architecture and Objective
 
 
 
156
 
157
- [More Information Needed]
158
 
159
- ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
 
164
 
165
- [More Information Needed]
 
166
 
167
- #### Software
 
 
 
 
168
 
169
- [More Information Needed]
 
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
 
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ language:
5
+ - en
6
+ metrics:
7
+ - code_eval
8
+ - accuracy
9
+ base_model:
10
+ - meta-llama/Llama-3.2-3B-Instruct
11
+ pipeline_tag: text-generation
12
+ ---
13
+ # Health Chatbot
14
+
15
+ Welcome to the official Hugging Face repository for **Health Chatbot**, a conversational AI model fine-tuned to assist with health-related queries. This model is based on [LLaMA 3.2](https://ai.meta.com/llama/), fine-tuned using **QLoRA** for lightweight and efficient training.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
+ ## Overview
20
 
21
+ **Health Chatbot** is designed to provide accurate and conversational responses for general health advice and wellness information. The model is intended for educational purposes and is not a substitute for professional medical consultation.
22
 
23
+ Key Features:
24
 
25
+ - Fine-tuned using **QLoRA** for parameter-efficient training.
26
+ - Trained on a diverse dataset of health-related queries and answers.
27
+ - Optimized for conversational and empathetic interactions.
28
 
29
+ ---
30
 
31
+ ## Model Details
32
 
33
+ - **Base Model**: LLaMA 3.2
34
+ - **Training Method**: QLoRA (Quantized Low-Rank Adaptation)
35
+ - **Dataset**: Custom curated dataset comprising publicly available health resources, FAQs, and synthetic dialogues.
36
+ - **Intended Use**: Conversational health assistance and wellness education.
37
 
38
+ ---
39
 
40
+ ## How to Use the Model
41
 
42
+ You can load and use the model in your Python environment with the `transformers` library:
43
 
44
+ ### Installation
45
 
46
+ Make sure you have the necessary dependencies installed:
47
 
48
+ ```bash
49
+ pip install transformers accelerate bitsandbytes
50
+ ```
51
 
52
+ ### Loading the Model
53
 
54
+ ```python
55
+ from transformers import AutoModelForCausalLM, AutoTokenizer
56
 
57
+ tokenizer = AutoTokenizer.from_pretrained("RayyanAhmed9477/Health-Chatbot")
58
+ model = AutoModelForCausalLM.from_pretrained(
59
+ "RayyanAhmed9477/Health-Chatbot",
60
+ device_map="auto",
61
+ load_in_8bit=True
62
+ )
63
 
64
+ # Generate a response
65
+ def chat(prompt):
66
+ inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
67
+ outputs = model.generate(**inputs, max_length=150, do_sample=True, temperature=0.7)
68
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
69
+ return response
70
 
71
+ # Example usage
72
+ prompt = "What are some common symptoms of the flu?"
73
+ print(chat(prompt))
74
+ ```
75
 
76
+ ---
77
 
78
+ ## Fine-Tuning the Model
79
 
80
+ If you want to fine-tune the model further on a custom dataset, follow the steps below.
81
 
82
+ ### Requirements
83
 
84
+ ```bash
85
+ pip install datasets peft
86
+ ```
87
 
88
+ ### Dataset Preparation
89
 
90
+ Prepare your dataset in a JSON or CSV format with `input` and `output` fields:
91
 
92
+ **Example Dataset (JSON)**:
93
 
94
+ ```json
95
+ [
96
+ {"input": "What are some symptoms of dehydration?", "output": "Symptoms include dry mouth, fatigue, and dizziness."},
97
+ {"input": "How can I boost my immune system?", "output": "Eat a balanced diet, exercise regularly, and get enough sleep."}
98
+ ]
99
+ ```
100
 
101
+ ### Training Script
102
 
103
+ ```python
104
+ from transformers import AutoModelForCausalLM, AutoTokenizer
105
+ from peft import prepare_model_for_int8_training, LoraConfig, get_peft_model
106
+ from datasets import load_dataset
107
 
108
+ # Load the base model and tokenizer
109
+ tokenizer = AutoTokenizer.from_pretrained("RayyanAhmed9477/Health-Chatbot")
110
+ model = AutoModelForCausalLM.from_pretrained(
111
+ "RayyanAhmed9477/Health-Chatbot",
112
+ device_map="auto",
113
+ load_in_8bit=True
114
+ )
115
 
116
+ # Prepare model for training
117
+ model = prepare_model_for_int8_training(model)
118
 
119
+ # Define LoRA configuration
120
+ lora_config = LoraConfig(
121
+ r=8,
122
+ lora_alpha=32,
123
+ target_modules=["q_proj", "v_proj"],
124
+ lora_dropout=0.1,
125
+ bias="none",
126
+ task_type="CAUSAL_LM"
127
+ )
128
+ model = get_peft_model(model, lora_config)
129
 
130
+ # Load your custom dataset
131
+ data = load_dataset("json", data_files="your_dataset.json")
132
 
133
+ # Fine-tune the model
134
+ from transformers import TrainingArguments, Trainer
135
 
136
+ training_args = TrainingArguments(
137
+ output_dir="./results",
138
+ per_device_train_batch_size=4,
139
+ num_train_epochs=3,
140
+ logging_dir="./logs",
141
+ save_strategy="epoch",
142
+ evaluation_strategy="epoch",
143
+ learning_rate=1e-4,
144
+ fp16=True
145
+ )
146
 
147
+ trainer = Trainer(
148
+ model=model,
149
+ args=training_args,
150
+ train_dataset=data["train"]
151
+ )
152
 
153
+ trainer.train()
154
 
155
+ # Save the fine-tuned model
156
+ model.save_pretrained("./fine_tuned_health_chatbot")
157
+ tokenizer.save_pretrained("./fine_tuned_health_chatbot")
158
+ ```
159
 
160
+ ---
161
 
162
+ ## Model Evaluation
163
 
164
+ Evaluate the model's performance using metrics like perplexity and BLEU:
165
 
166
+ ```python
167
+ from datasets import load_metric
168
 
169
+ # Load evaluation dataset
170
+ eval_data = load_dataset("json", data_files="evaluation_dataset.json")
171
 
172
+ # Evaluate with perplexity
173
+ def compute_perplexity(model, dataset):
174
+ metric = load_metric("perplexity")
175
+ results = metric.compute(model=model, dataset=dataset)
176
+ return results
177
 
178
+ print(compute_perplexity(model, eval_data["test"]))
179
+ ```
180
 
181
+ ---
182
 
183
+ ## Limitations and Warnings
184
 
185
+ - The model is not a substitute for professional medical advice.
186
+ - Responses are generated based on patterns in the training data and may not always be accurate or up-to-date.
187
 
188
+ ---
189
 
190
+ ## Contributing
191
 
192
+ Contributions are welcome! If you have suggestions, improvements, or issues to report, please create a pull request or an issue in this repository.
193
 
194
+ ---
195
 
196
+ ## License
197
 
198
+ This model is released under the [Apache 2.0 License](LICENSE).
199
 
200
+ ---
201
 
202
+ ## Contact
203
 
204
+ For any queries or collaborations, reach out to me via [GitHub](https://github.com/Rayyan9477) or email at `[email protected]`, [LinkedIn](https\://www\.linkedin.com/in/rayyan-ahmed9477/)  .
205
 
206
+ ---
207
 
208
+ ## Acknowledgements
209
 
210
+ Special thanks to the Hugging Face and Meta AI teams for their open-source contributions to the NLP and machine learning community.