Training Script and Readability
Browse files
README.md
CHANGED
@@ -1,199 +1,210 @@
|
|
1 |
-
---
|
2 |
-
library_name: transformers
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
<!-- Provide a longer summary of what this model is. -->
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
|
80 |
-
|
81 |
|
82 |
-
|
83 |
|
84 |
-
|
85 |
|
86 |
-
|
|
|
|
|
87 |
|
88 |
-
|
89 |
|
90 |
-
|
91 |
|
|
|
|
|
|
|
|
|
92 |
|
93 |
-
|
94 |
|
95 |
-
|
96 |
|
97 |
-
|
98 |
|
99 |
-
|
100 |
|
101 |
-
|
102 |
|
103 |
-
|
|
|
|
|
104 |
|
105 |
-
|
106 |
|
107 |
-
|
|
|
108 |
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
-
|
|
|
|
|
|
|
114 |
|
115 |
-
|
116 |
|
117 |
-
|
118 |
|
119 |
-
|
120 |
|
121 |
-
|
122 |
|
123 |
-
|
|
|
|
|
124 |
|
125 |
-
|
126 |
|
127 |
-
|
128 |
|
129 |
-
|
130 |
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
132 |
|
|
|
133 |
|
|
|
|
|
|
|
|
|
134 |
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
-
|
|
|
138 |
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
-
|
|
|
142 |
|
143 |
-
|
|
|
144 |
|
145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
|
153 |
-
|
154 |
|
155 |
-
|
|
|
|
|
|
|
156 |
|
157 |
-
|
158 |
|
159 |
-
|
160 |
|
161 |
-
|
162 |
|
163 |
-
|
|
|
164 |
|
165 |
-
|
|
|
166 |
|
167 |
-
|
|
|
|
|
|
|
|
|
168 |
|
169 |
-
[
|
|
|
170 |
|
171 |
-
|
172 |
|
173 |
-
|
174 |
|
175 |
-
|
|
|
176 |
|
177 |
-
|
178 |
|
179 |
-
|
180 |
|
181 |
-
|
182 |
|
183 |
-
|
184 |
|
185 |
-
|
186 |
|
187 |
-
[
|
188 |
|
189 |
-
|
190 |
|
191 |
-
|
192 |
|
193 |
-
|
194 |
|
195 |
-
|
196 |
|
197 |
-
##
|
198 |
|
199 |
-
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
metrics:
|
7 |
+
- code_eval
|
8 |
+
- accuracy
|
9 |
+
base_model:
|
10 |
+
- meta-llama/Llama-3.2-3B-Instruct
|
11 |
+
pipeline_tag: text-generation
|
12 |
+
---
|
13 |
+
# Health Chatbot
|
14 |
+
|
15 |
+
Welcome to the official Hugging Face repository for **Health Chatbot**, a conversational AI model fine-tuned to assist with health-related queries. This model is based on [LLaMA 3.2](https://ai.meta.com/llama/), fine-tuned using **QLoRA** for lightweight and efficient training.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
## Overview
|
20 |
|
21 |
+
**Health Chatbot** is designed to provide accurate and conversational responses for general health advice and wellness information. The model is intended for educational purposes and is not a substitute for professional medical consultation.
|
22 |
|
23 |
+
Key Features:
|
24 |
|
25 |
+
- Fine-tuned using **QLoRA** for parameter-efficient training.
|
26 |
+
- Trained on a diverse dataset of health-related queries and answers.
|
27 |
+
- Optimized for conversational and empathetic interactions.
|
28 |
|
29 |
+
---
|
30 |
|
31 |
+
## Model Details
|
32 |
|
33 |
+
- **Base Model**: LLaMA 3.2
|
34 |
+
- **Training Method**: QLoRA (Quantized Low-Rank Adaptation)
|
35 |
+
- **Dataset**: Custom curated dataset comprising publicly available health resources, FAQs, and synthetic dialogues.
|
36 |
+
- **Intended Use**: Conversational health assistance and wellness education.
|
37 |
|
38 |
+
---
|
39 |
|
40 |
+
## How to Use the Model
|
41 |
|
42 |
+
You can load and use the model in your Python environment with the `transformers` library:
|
43 |
|
44 |
+
### Installation
|
45 |
|
46 |
+
Make sure you have the necessary dependencies installed:
|
47 |
|
48 |
+
```bash
|
49 |
+
pip install transformers accelerate bitsandbytes
|
50 |
+
```
|
51 |
|
52 |
+
### Loading the Model
|
53 |
|
54 |
+
```python
|
55 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
56 |
|
57 |
+
tokenizer = AutoTokenizer.from_pretrained("RayyanAhmed9477/Health-Chatbot")
|
58 |
+
model = AutoModelForCausalLM.from_pretrained(
|
59 |
+
"RayyanAhmed9477/Health-Chatbot",
|
60 |
+
device_map="auto",
|
61 |
+
load_in_8bit=True
|
62 |
+
)
|
63 |
|
64 |
+
# Generate a response
|
65 |
+
def chat(prompt):
|
66 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
67 |
+
outputs = model.generate(**inputs, max_length=150, do_sample=True, temperature=0.7)
|
68 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
69 |
+
return response
|
70 |
|
71 |
+
# Example usage
|
72 |
+
prompt = "What are some common symptoms of the flu?"
|
73 |
+
print(chat(prompt))
|
74 |
+
```
|
75 |
|
76 |
+
---
|
77 |
|
78 |
+
## Fine-Tuning the Model
|
79 |
|
80 |
+
If you want to fine-tune the model further on a custom dataset, follow the steps below.
|
81 |
|
82 |
+
### Requirements
|
83 |
|
84 |
+
```bash
|
85 |
+
pip install datasets peft
|
86 |
+
```
|
87 |
|
88 |
+
### Dataset Preparation
|
89 |
|
90 |
+
Prepare your dataset in a JSON or CSV format with `input` and `output` fields:
|
91 |
|
92 |
+
**Example Dataset (JSON)**:
|
93 |
|
94 |
+
```json
|
95 |
+
[
|
96 |
+
{"input": "What are some symptoms of dehydration?", "output": "Symptoms include dry mouth, fatigue, and dizziness."},
|
97 |
+
{"input": "How can I boost my immune system?", "output": "Eat a balanced diet, exercise regularly, and get enough sleep."}
|
98 |
+
]
|
99 |
+
```
|
100 |
|
101 |
+
### Training Script
|
102 |
|
103 |
+
```python
|
104 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
105 |
+
from peft import prepare_model_for_int8_training, LoraConfig, get_peft_model
|
106 |
+
from datasets import load_dataset
|
107 |
|
108 |
+
# Load the base model and tokenizer
|
109 |
+
tokenizer = AutoTokenizer.from_pretrained("RayyanAhmed9477/Health-Chatbot")
|
110 |
+
model = AutoModelForCausalLM.from_pretrained(
|
111 |
+
"RayyanAhmed9477/Health-Chatbot",
|
112 |
+
device_map="auto",
|
113 |
+
load_in_8bit=True
|
114 |
+
)
|
115 |
|
116 |
+
# Prepare model for training
|
117 |
+
model = prepare_model_for_int8_training(model)
|
118 |
|
119 |
+
# Define LoRA configuration
|
120 |
+
lora_config = LoraConfig(
|
121 |
+
r=8,
|
122 |
+
lora_alpha=32,
|
123 |
+
target_modules=["q_proj", "v_proj"],
|
124 |
+
lora_dropout=0.1,
|
125 |
+
bias="none",
|
126 |
+
task_type="CAUSAL_LM"
|
127 |
+
)
|
128 |
+
model = get_peft_model(model, lora_config)
|
129 |
|
130 |
+
# Load your custom dataset
|
131 |
+
data = load_dataset("json", data_files="your_dataset.json")
|
132 |
|
133 |
+
# Fine-tune the model
|
134 |
+
from transformers import TrainingArguments, Trainer
|
135 |
|
136 |
+
training_args = TrainingArguments(
|
137 |
+
output_dir="./results",
|
138 |
+
per_device_train_batch_size=4,
|
139 |
+
num_train_epochs=3,
|
140 |
+
logging_dir="./logs",
|
141 |
+
save_strategy="epoch",
|
142 |
+
evaluation_strategy="epoch",
|
143 |
+
learning_rate=1e-4,
|
144 |
+
fp16=True
|
145 |
+
)
|
146 |
|
147 |
+
trainer = Trainer(
|
148 |
+
model=model,
|
149 |
+
args=training_args,
|
150 |
+
train_dataset=data["train"]
|
151 |
+
)
|
152 |
|
153 |
+
trainer.train()
|
154 |
|
155 |
+
# Save the fine-tuned model
|
156 |
+
model.save_pretrained("./fine_tuned_health_chatbot")
|
157 |
+
tokenizer.save_pretrained("./fine_tuned_health_chatbot")
|
158 |
+
```
|
159 |
|
160 |
+
---
|
161 |
|
162 |
+
## Model Evaluation
|
163 |
|
164 |
+
Evaluate the model's performance using metrics like perplexity and BLEU:
|
165 |
|
166 |
+
```python
|
167 |
+
from datasets import load_metric
|
168 |
|
169 |
+
# Load evaluation dataset
|
170 |
+
eval_data = load_dataset("json", data_files="evaluation_dataset.json")
|
171 |
|
172 |
+
# Evaluate with perplexity
|
173 |
+
def compute_perplexity(model, dataset):
|
174 |
+
metric = load_metric("perplexity")
|
175 |
+
results = metric.compute(model=model, dataset=dataset)
|
176 |
+
return results
|
177 |
|
178 |
+
print(compute_perplexity(model, eval_data["test"]))
|
179 |
+
```
|
180 |
|
181 |
+
---
|
182 |
|
183 |
+
## Limitations and Warnings
|
184 |
|
185 |
+
- The model is not a substitute for professional medical advice.
|
186 |
+
- Responses are generated based on patterns in the training data and may not always be accurate or up-to-date.
|
187 |
|
188 |
+
---
|
189 |
|
190 |
+
## Contributing
|
191 |
|
192 |
+
Contributions are welcome! If you have suggestions, improvements, or issues to report, please create a pull request or an issue in this repository.
|
193 |
|
194 |
+
---
|
195 |
|
196 |
+
## License
|
197 |
|
198 |
+
This model is released under the [Apache 2.0 License](LICENSE).
|
199 |
|
200 |
+
---
|
201 |
|
202 |
+
## Contact
|
203 |
|
204 |
+
For any queries or collaborations, reach out to me via [GitHub](https://github.com/Rayyan9477) or email at `[email protected]`, [LinkedIn](https\://www\.linkedin.com/in/rayyan-ahmed9477/) .
|
205 |
|
206 |
+
---
|
207 |
|
208 |
+
## Acknowledgements
|
209 |
|
210 |
+
Special thanks to the Hugging Face and Meta AI teams for their open-source contributions to the NLP and machine learning community.
|