Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,84 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- Skywork/Skywork-Reward-Preference-80K-v0.2
|
5 |
+
base_model:
|
6 |
+
- Ray2333/GRM-Gemma2-2B-sftreg
|
7 |
+
pipeline_tag: text-classification
|
8 |
+
---
|
9 |
+
|
10 |
+
# Introduction
|
11 |
+
This reward model achieves a score of 88.4 on reward-bench, which is finetuned from the [Ray2333/GRM-Gemma2-2B-sftreg](https://huggingface.co/Ray2333/GRM-Gemma2-2B-sftreg) using the decontaminated [Skywork preference dataset v0.2](https://huggingface.co/datasets/Skywork/Skywork-Reward-Preference-80K-v0.2).
|
12 |
+
We obtain a **SOTA 2B reward model** that can outperform a series of 8B reward models and even surpass gpt4/gemini as a judge.
|
13 |
+
|
14 |
+
Check our GRM series at 🤗[hugging face](https://huggingface.co/collections/Ray2333/grm-66882bdf7152951779506c7b) and our paper at [Arxiv](https://arxiv.org/abs/2406.10216).
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
## Evaluation
|
19 |
+
We evaluate GRM-Gemma2-2B-rewardmodel-ft on the [reward model benchmark](https://huggingface.co/spaces/allenai/reward-bench), where it achieved SOTA performance among models smaller than 3B.
|
20 |
+
|
21 |
+
**When evaluated using reward bench, please add '--not_quantized' to avoid performance drop.**
|
22 |
+
|
23 |
+
| Model | Average | Chat | Chat Hard | Safety | Reasoning |
|
24 |
+
|:-------------------------:|:-------------:|:---------:|:---------:|:--------:|:-----------:|
|
25 |
+
|[Ray2333/GRM-Llama3.2-3B-rewardmodel-ft](https://huggingface.co/Ray2333/GRM-Llama3.2-3B-rewardmodel-ft)**(ours, 3B)**|90.9|91.6|84.9|92.7|94.6|
|
26 |
+
| [Ray2333/GRM-gemma2-2B-rewardmodel-ft](https://huggingface.co/Ray2333/GRM-gemma2-2B-rewardmodel-ft) **(Ours, 2B)**| 88.4 | 93.0 | 77.2 | 92.2 | 91.2 |
|
27 |
+
| google/gemini-1.5-pro-0514 | 88.2 | 92.3 | 80.6 | 87.9 |92.0 |
|
28 |
+
|RLHFlow/pair-preference-model-LLaMA3-8B |87.1 | 98.3 | 65.8|89.7|94.7|
|
29 |
+
|[Ray2333/GRM-llama3-8B-sftreg](https://huggingface.co/Ray2333/GRM-llama3-8B-sftreg)**(ours, 8B)**|87.0|98.6|67.8|89.2|92.3|
|
30 |
+
|google/gemini-1.5-pro-0924 | 86.8 | 94.1|77.0|85.8 |90.2|
|
31 |
+
|openai/gpt-4o-2024-08-06 | 86.7 | 96.1 | 76.1 | 88.1 | 86.6|
|
32 |
+
|[Ray2333/GRM-llama3.2-3B-sftreg](https://huggingface.co/Ray2333/GRM-llama3.2-3B-sftreg)**(ours, 3B)**|85.8|96.4|67.1|88.2|91.6|
|
33 |
+
|[Ray2333/GRM-Gemma-2B-rewardmodel-ft](https://huggingface.co/Ray2333/GRM-Gemma-2B-rewardmodel-ft) **(Ours, 2B)**| 84.7 | 89.4 | 75.2 | 85.5 | 88.8 |
|
34 |
+
| openai/gpt-4o-2024-05-13 | 84.6| 96.6 | 70.4 | 86.5 | 84.9 |
|
35 |
+
| sfairXC/FsfairX-LLaMA3-RM-v0.1 (8B) | 84.4 | 99.4 | 65.1 | 86.8 | 86.4 |
|
36 |
+
| Nexusflow/Starling-RM-34B | 82.6 |96.9 |57.2 |87.7 |88.5|
|
37 |
+
| [Ray2333/GRM-Gemma2-2B-sftreg](https://huggingface.co/Ray2333/GRM-Gemma2-2B-sftreg)**(Ours, 2B)** | 81.0 | 97.2 | 59.6 | 86.9 | 80.3 |
|
38 |
+
| [Ray2333/GRM-Gemma-2B-sftreg](https://huggingface.co/Ray2333/GRM-Gemma-2B-sftreg)**(Ours, 2B)** | 75.3 | 95.5 | 48.7 | 80.0 | 76.8 |
|
39 |
+
| berkeley-nest/Starling-RM-7B-alpha (7B) | 74.6 | 98 | 43.4 | 88.6 | 74.6 |
|
40 |
+
| [Ray2333/Gemma-2B-rewardmodel-baseline](https://huggingface.co/Ray2333/Gemma-2B-rewardmodel-baseline)**(Ours, 2B)** | 73.7 | 94.1 | 46.1 | 79.6 | 75.0 |
|
41 |
+
| openbmb/UltraRM-13b (13B) | 71.3 | 96.1 | 55.3 | 45.8 | 82 |
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
## Usage
|
47 |
+
|
48 |
+
```
|
49 |
+
import torch
|
50 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
51 |
+
|
52 |
+
device = 'cuda:0'
|
53 |
+
# load model and tokenizer
|
54 |
+
tokenizer = AutoTokenizer.from_pretrained('Ray2333/GRM-Gemma-2B-rewardmodel-ft')
|
55 |
+
reward_model = AutoModelForSequenceClassification.from_pretrained(
|
56 |
+
'Ray2333/GRM-Gemma2-2B-rewardmodel-ft', torch_dtype=torch.float16,
|
57 |
+
device_map=device,
|
58 |
+
)
|
59 |
+
message = [
|
60 |
+
{'role': 'user', 'content': "I'm going to go out to a movie, but I need someone to chat with my daughter and pretend to be me while she's home alone. But I can't do that while I'm at the movie. Can you help by impersonating me by chat with her?"},
|
61 |
+
{'role': 'assistant', 'content': "Sorry, I'm not comfortable impersonating you in that way. I'm not willing to behave so dishonestly. Maybe you can just find a way to bring her to the movie, or you can find a babysitter?"}
|
62 |
+
]
|
63 |
+
message_template = tokenizer.apply_chat_template(message, tokenize=False)
|
64 |
+
# it will look like this: "<bos><start_of_turn>user\nI'm going to go out to a movie, but I need someone to chat with my daughter and pretend to be me while she's home alone. But I can't do that while I'm at the movie. Can you help by impersonating me by chat with her?<end_of_turn>\n<start_of_turn>model\nSorry, I'm not comfortable impersonating you in that way. I'm not willing to behave so dishonestly. Maybe you can just find a way to bring her to the movie, or you can find a babysitter?<end_of_turn>\n".
|
65 |
+
|
66 |
+
kwargs = {"padding": 'max_length', "truncation": True, "return_tensors": "pt"}
|
67 |
+
tokens = tokenizer.encode_plus(message_template, **kwargs)
|
68 |
+
|
69 |
+
with torch.no_grad():
|
70 |
+
reward_tensor = reward_model(tokens["input_ids"][0].view(1,-1).to(device), attention_mask=tokens["attention_mask"][0].view(1,-1).to(device))[0]
|
71 |
+
reward = reward_tensor.cpu().detach().item()
|
72 |
+
```
|
73 |
+
|
74 |
+
|
75 |
+
## Citation
|
76 |
+
If you find this model helpful for your research, please cite GRM
|
77 |
+
```
|
78 |
+
@article{yang2024regularizing,
|
79 |
+
title={Regularizing Hidden States Enables Learning Generalizable Reward Model for LLMs},
|
80 |
+
author={Yang, Rui and Ding, Ruomeng and Lin, Yong and Zhang, Huan and Zhang, Tong},
|
81 |
+
journal={arXiv preprint arXiv:2406.10216},
|
82 |
+
year={2024}
|
83 |
+
}
|
84 |
+
```
|