File size: 3,602 Bytes
92f78c1 b78e939 92f78c1 095690a 92f78c1 a74e0d9 92f78c1 b78e939 92f78c1 929a46a af28dd9 0098693 f796234 92f78c1 b78e939 0098693 92f78c1 af28dd9 dd295ac 92f78c1 af28dd9 92f78c1 54a26af af28dd9 54a26af af28dd9 5f6d134 54a26af af28dd9 54a26af 92f78c1 af28dd9 92f78c1 af28dd9 92f78c1 095690a 92f78c1 a74e0d9 92f78c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
---
license: creativeml-openrail-m
base_model: "black-forest-labs/FLUX.1-dev"
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- simpletuner
- lora
- template:sd-lora
inference: true
---
# flux-dreambooth-lora-r128-dev-reddit
This is a LoRA derived from [black-forest-labs/FLUX.1-dev](https://huggingface.co./black-forest-labs/FLUX.1-dev).
The main validation prompt used during training was:
```
a fully-clothed photograph of an adult woman, in photograph style
```
## Validation settings
- CFG: `3.0`
- CFG Rescale: `0.0`
- Steps: `20`
- Sampler: `None`
- Seed: `420420420`
- Resolutions: `1024x1024,1280x768,960x1152`
Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
<Gallery />
The text encoder **was not** trained.
You may reuse the base model text encoder for inference.
## Training settings
- Training epochs: 1
- Training steps: 13000
- Learning rate: 4e-05
- Effective batch size: 8
- Micro-batch size: 8
- Gradient accumulation steps: 1
- Number of GPUs: 1
- Prediction type: flow-matching
- Rescaled betas zero SNR: False
- Optimizer: adamw_bf16
- Precision: bf16
- Quantised: No
- Xformers: Not used
- LoRA Rank: 128
- LoRA Alpha: 128.0
- LoRA Dropout: 0.1
- LoRA initialisation style: default
## Datasets
### normalnudes
- Repeats: 0
- Total number of images: 1126
- Total number of aspect buckets: 3
- Resolution: 1.0 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: random
### nsfw-1024
- Repeats: 0
- Total number of images: 10816
- Total number of aspect buckets: 1
- Resolution: 512 px
- Cropped: True
- Crop style: random
- Crop aspect: square
### shutterstock
- Repeats: 0
- Total number of images: 21076
- Total number of aspect buckets: 1
- Resolution: 512 px
- Cropped: True
- Crop style: random
- Crop aspect: square
### normalnudes-1024
- Repeats: 0
- Total number of images: 1080
- Total number of aspect buckets: 15
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
### nsfw-1024px
- Repeats: 0
- Total number of images: 10816
- Total number of aspect buckets: 14
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
### shutterstock-1024
- Repeats: 0
- Total number of images: 21055
- Total number of aspect buckets: 28
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
### julia
- Repeats: 0
- Total number of images: 34
- Total number of aspect buckets: 1
- Resolution: 512 px
- Cropped: True
- Crop style: random
- Crop aspect: square
### riverphoenix
- Repeats: 0
- Total number of images: 27
- Total number of aspect buckets: 1
- Resolution: 512 px
- Cropped: True
- Crop style: random
- Crop aspect: square
## Inference
```python
import torch
from diffusers import DiffusionPipeline
model_id = 'black-forest-labs/FLUX.1-dev'
adapter_id = 'ptx0/flux-dreambooth-lora-r128-dev-reddit'
pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline.load_lora_weights(adapter_id)
prompt = "a fully-clothed photograph of an adult woman, in photograph style"
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
prompt=prompt,
num_inference_steps=20,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
width=1024,
height=1024,
guidance_scale=3.0,
).images[0]
image.save("output.png", format="PNG")
```
|