--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: RewardModelSmallerQuestionWithTwoLabels results: [] --- # RewardModelSmallerQuestionWithTwoLabels This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6213 - F1: 0.6909 - Roc Auc: 0.6913 - Accuracy: 0.6875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | No log | 1.0 | 233 | 0.6765 | 0.5447 | 0.5675 | 0.5175 | | No log | 2.0 | 466 | 0.6107 | 0.6767 | 0.6775 | 0.665 | | 0.6569 | 3.0 | 699 | 0.6213 | 0.6909 | 0.6913 | 0.6875 | | 0.6569 | 4.0 | 932 | 0.9449 | 0.6683 | 0.6687 | 0.6675 | | 0.3594 | 5.0 | 1165 | 1.0846 | 0.6816 | 0.6812 | 0.6775 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3