Upload processor
Browse files- preprocessor_config.json +1 -1
- processing_florence2.py +1088 -0
- processor_config.json +6 -0
- special_tokens_map.json +0 -0
- tokenizer.json +1 -8
- tokenizer_config.json +1031 -0
preprocessor_config.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"auto_map": {
|
3 |
-
"AutoProcessor": "
|
4 |
},
|
5 |
"crop_size": {
|
6 |
"height": 768,
|
|
|
1 |
{
|
2 |
"auto_map": {
|
3 |
+
"AutoProcessor": "processing_florence2.Florence2Processor"
|
4 |
},
|
5 |
"crop_size": {
|
6 |
"height": 768,
|
processing_florence2.py
ADDED
@@ -0,0 +1,1088 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Microsoft and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Processor class for Florence-2.
|
17 |
+
"""
|
18 |
+
|
19 |
+
import re
|
20 |
+
import logging
|
21 |
+
from typing import List, Optional, Union
|
22 |
+
import numpy as np
|
23 |
+
|
24 |
+
import torch
|
25 |
+
|
26 |
+
from transformers.feature_extraction_utils import BatchFeature
|
27 |
+
from transformers.image_utils import ImageInput, is_valid_image
|
28 |
+
from transformers.processing_utils import ProcessorMixin
|
29 |
+
from transformers.tokenization_utils_base import (
|
30 |
+
PaddingStrategy,
|
31 |
+
PreTokenizedInput,
|
32 |
+
TextInput,
|
33 |
+
TruncationStrategy,
|
34 |
+
)
|
35 |
+
from transformers.utils import TensorType
|
36 |
+
|
37 |
+
|
38 |
+
logger = logging.getLogger(__name__)
|
39 |
+
|
40 |
+
# Copied from transformers.models.idefics2.processing_idefics2.is_url
|
41 |
+
def is_url(val) -> bool:
|
42 |
+
return isinstance(val, str) and val.startswith("http")
|
43 |
+
|
44 |
+
# Copied from transformers.models.idefics2.processing_idefics2.is_image_or_image_url
|
45 |
+
def is_image_or_image_url(elem):
|
46 |
+
return is_url(elem) or is_valid_image(elem)
|
47 |
+
|
48 |
+
|
49 |
+
def _is_str_or_image(elem):
|
50 |
+
return isinstance(elem, (str)) or is_image_or_image_url(elem)
|
51 |
+
|
52 |
+
|
53 |
+
class Florence2Processor(ProcessorMixin):
|
54 |
+
r"""
|
55 |
+
Constructs a Florence2 processor which wraps a Florence2 image processor and a Florence2 tokenizer into a single processor.
|
56 |
+
|
57 |
+
[`Florence2Processor`] offers all the functionalities of [`CLIPImageProcessor`] and [`BartTokenizerFast`]. See the
|
58 |
+
[`~Florence2Processor.__call__`] and [`~Florence2Processor.decode`] for more information.
|
59 |
+
|
60 |
+
Args:
|
61 |
+
image_processor ([`CLIPImageProcessor`], *optional*):
|
62 |
+
The image processor is a required input.
|
63 |
+
tokenizer ([`BartTokenizerFast`], *optional*):
|
64 |
+
The tokenizer is a required input.
|
65 |
+
"""
|
66 |
+
|
67 |
+
attributes = ["image_processor", "tokenizer"]
|
68 |
+
image_processor_class = "CLIPImageProcessor"
|
69 |
+
tokenizer_class = ("BartTokenizer", "BartTokenizerFast")
|
70 |
+
|
71 |
+
def __init__(
|
72 |
+
self,
|
73 |
+
image_processor=None,
|
74 |
+
tokenizer=None,
|
75 |
+
):
|
76 |
+
if image_processor is None:
|
77 |
+
raise ValueError("You need to specify an `image_processor`.")
|
78 |
+
if tokenizer is None:
|
79 |
+
raise ValueError("You need to specify a `tokenizer`.")
|
80 |
+
if not hasattr(image_processor, "image_seq_length"):
|
81 |
+
raise ValueError("Image processor is missing an `image_seq_length` attribute.")
|
82 |
+
|
83 |
+
self.image_seq_length = image_processor.image_seq_length
|
84 |
+
|
85 |
+
tokens_to_add = {
|
86 |
+
'additional_special_tokens': \
|
87 |
+
tokenizer.additional_special_tokens + \
|
88 |
+
['<od>', '</od>', '<ocr>', '</ocr>'] + \
|
89 |
+
[f'<loc_{x}>' for x in range(1000)] + \
|
90 |
+
['<cap>', '</cap>', '<ncap>', '</ncap>','<dcap>', '</dcap>', '<grounding>', '</grounding>', '<seg>', '</seg>', '<sep>', '<region_cap>', '</region_cap>', '<region_to_desciption>', '</region_to_desciption>', '<proposal>', '</proposal>', '<poly>', '</poly>', '<and>']
|
91 |
+
}
|
92 |
+
tokenizer.add_special_tokens(tokens_to_add)
|
93 |
+
|
94 |
+
self.tasks_answer_post_processing_type = {
|
95 |
+
'<OCR>': 'pure_text',
|
96 |
+
'<OCR_WITH_REGION>': 'ocr',
|
97 |
+
'<CAPTION>': 'pure_text',
|
98 |
+
'<DETAILED_CAPTION>': 'pure_text',
|
99 |
+
'<MORE_DETAILED_CAPTION>': 'pure_text',
|
100 |
+
'<OD>': 'description_with_bboxes',
|
101 |
+
'<DENSE_REGION_CAPTION>': 'description_with_bboxes',
|
102 |
+
'<CAPTION_TO_PHRASE_GROUNDING>': "phrase_grounding",
|
103 |
+
'<REFERRING_EXPRESSION_SEGMENTATION>': 'polygons',
|
104 |
+
'<REGION_TO_SEGMENTATION>': 'polygons',
|
105 |
+
'<OPEN_VOCABULARY_DETECTION>': 'description_with_bboxes_or_polygons',
|
106 |
+
'<REGION_TO_CATEGORY>': 'pure_text',
|
107 |
+
'<REGION_TO_DESCRIPTION>': 'pure_text',
|
108 |
+
'<REGION_TO_OCR>': 'pure_text',
|
109 |
+
'<REGION_PROPOSAL>': 'bboxes'
|
110 |
+
}
|
111 |
+
|
112 |
+
self.task_prompts_without_inputs = {
|
113 |
+
'<OCR>': 'What is the text in the image?',
|
114 |
+
'<OCR_WITH_REGION>': 'What is the text in the image, with regions?',
|
115 |
+
'<CAPTION>': 'What does the image describe?',
|
116 |
+
'<DETAILED_CAPTION>': 'Describe in detail what is shown in the image.',
|
117 |
+
'<MORE_DETAILED_CAPTION>': 'Describe with a paragraph what is shown in the image.',
|
118 |
+
'<OD>': 'Locate the objects with category name in the image.',
|
119 |
+
'<DENSE_REGION_CAPTION>': 'Locate the objects in the image, with their descriptions.',
|
120 |
+
'<REGION_PROPOSAL>': 'Locate the region proposals in the image.'
|
121 |
+
}
|
122 |
+
|
123 |
+
self.task_prompts_with_input = {
|
124 |
+
'<CAPTION_TO_PHRASE_GROUNDING>': "Locate the phrases in the caption: {input}",
|
125 |
+
'<REFERRING_EXPRESSION_SEGMENTATION>': 'Locate {input} in the image with mask',
|
126 |
+
'<REGION_TO_SEGMENTATION>': 'What is the polygon mask of region {input}',
|
127 |
+
'<OPEN_VOCABULARY_DETECTION>': 'Locate {input} in the image.',
|
128 |
+
'<REGION_TO_CATEGORY>': 'What is the region {input}?',
|
129 |
+
'<REGION_TO_DESCRIPTION>': 'What does the region {input} describe?',
|
130 |
+
'<REGION_TO_OCR>': 'What text is in the region {input}?',
|
131 |
+
}
|
132 |
+
|
133 |
+
self.post_processor = Florence2PostProcesser(tokenizer=tokenizer)
|
134 |
+
|
135 |
+
|
136 |
+
super().__init__(image_processor, tokenizer)
|
137 |
+
|
138 |
+
def _construct_prompts(self, text):
|
139 |
+
# replace the task tokens with the task prompts if task token is in the text
|
140 |
+
prompts = []
|
141 |
+
for _text in text:
|
142 |
+
# 1. fixed task prompts without additional inputs
|
143 |
+
for task_token, task_prompt in self.task_prompts_without_inputs.items():
|
144 |
+
if task_token in _text:
|
145 |
+
assert _text == task_token, f"Task token {task_token} should be the only token in the text."
|
146 |
+
_text = task_prompt
|
147 |
+
break
|
148 |
+
# 2. task prompts with additional inputs
|
149 |
+
for task_token, task_prompt in self.task_prompts_with_input.items():
|
150 |
+
if task_token in _text:
|
151 |
+
_text = task_prompt.format(input=_text.replace(task_token, ''))
|
152 |
+
break
|
153 |
+
prompts.append(_text)
|
154 |
+
return prompts
|
155 |
+
|
156 |
+
def __call__(
|
157 |
+
self,
|
158 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
159 |
+
images: ImageInput = None,
|
160 |
+
tokenize_newline_separately: bool = True,
|
161 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
162 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
163 |
+
max_length=None,
|
164 |
+
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
|
165 |
+
do_resize: bool = None,
|
166 |
+
do_normalize: bool = None,
|
167 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
168 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
169 |
+
data_format: Optional["ChannelDimension"] = "channels_first", # noqa: F821
|
170 |
+
input_data_format: Optional[
|
171 |
+
Union[str, "ChannelDimension"] # noqa: F821
|
172 |
+
] = None,
|
173 |
+
resample: "PILImageResampling" = None, # noqa: F821
|
174 |
+
do_convert_rgb: bool = None,
|
175 |
+
do_thumbnail: bool = None,
|
176 |
+
do_align_long_axis: bool = None,
|
177 |
+
do_rescale: bool = None,
|
178 |
+
) -> BatchFeature:
|
179 |
+
"""
|
180 |
+
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
181 |
+
and `kwargs` arguments to BartTokenizerFast's [`~BartTokenizerFast.__call__`] if `text` is not `None` to encode
|
182 |
+
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
|
183 |
+
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
|
184 |
+
of the above two methods for more information.
|
185 |
+
|
186 |
+
Args:
|
187 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
188 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
189 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
190 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
191 |
+
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
192 |
+
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
193 |
+
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
|
194 |
+
number of channels, H and W are image height and width.
|
195 |
+
tokenize_newline_separately (`bool`, defaults to `True`):
|
196 |
+
Adds a separately tokenized '\n' at the end of the prompt.
|
197 |
+
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
|
198 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
199 |
+
index) among:
|
200 |
+
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
201 |
+
sequence if provided).
|
202 |
+
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
203 |
+
acceptable input length for the model if that argument is not provided.
|
204 |
+
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
205 |
+
lengths).
|
206 |
+
max_length (`int`, *optional*):
|
207 |
+
Maximum length of the returned list and optionally padding length (see above).
|
208 |
+
truncation (`bool`, *optional*):
|
209 |
+
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
|
210 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
211 |
+
If set, will return tensors of a particular framework. Acceptable values are:
|
212 |
+
|
213 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
214 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
215 |
+
- `'np'`: Return NumPy `np.ndarray` objects.
|
216 |
+
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
217 |
+
|
218 |
+
Returns:
|
219 |
+
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
220 |
+
|
221 |
+
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. If `suffix`
|
222 |
+
is provided, the `input_ids` will also contain the suffix input ids.
|
223 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
224 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
225 |
+
`None`).
|
226 |
+
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
227 |
+
- **labels** -- Labels compatible with training if `suffix` is not None
|
228 |
+
"""
|
229 |
+
|
230 |
+
return_token_type_ids = False
|
231 |
+
|
232 |
+
if images is None:
|
233 |
+
raise ValueError("`images` are expected as arguments to a `Florence2Processor` instance.")
|
234 |
+
if text is None:
|
235 |
+
logger.warning_once(
|
236 |
+
"You are using Florence-2 without a text prompt."
|
237 |
+
)
|
238 |
+
text = ""
|
239 |
+
|
240 |
+
if isinstance(text, List) and isinstance(images, List):
|
241 |
+
if len(images) < len(text):
|
242 |
+
raise ValueError(
|
243 |
+
f"Received {len(images)} images for {len(text)} prompts. Each prompt should be associated with an image."
|
244 |
+
)
|
245 |
+
if _is_str_or_image(text):
|
246 |
+
text = [text]
|
247 |
+
elif isinstance(text, list) and _is_str_or_image(text[0]):
|
248 |
+
pass
|
249 |
+
|
250 |
+
pixel_values = self.image_processor(
|
251 |
+
images,
|
252 |
+
do_resize=do_resize,
|
253 |
+
do_normalize=do_normalize,
|
254 |
+
return_tensors=return_tensors,
|
255 |
+
image_mean=image_mean,
|
256 |
+
image_std=image_std,
|
257 |
+
input_data_format=input_data_format,
|
258 |
+
data_format=data_format,
|
259 |
+
resample=resample,
|
260 |
+
do_convert_rgb=do_convert_rgb,
|
261 |
+
)["pixel_values"]
|
262 |
+
|
263 |
+
if max_length is not None:
|
264 |
+
max_length -= self.image_seq_length # max_length has to account for the image tokens
|
265 |
+
|
266 |
+
text = self._construct_prompts(text)
|
267 |
+
|
268 |
+
inputs = self.tokenizer(
|
269 |
+
text,
|
270 |
+
return_tensors=return_tensors,
|
271 |
+
padding=padding,
|
272 |
+
max_length=max_length,
|
273 |
+
truncation=truncation,
|
274 |
+
return_token_type_ids=return_token_type_ids,
|
275 |
+
)
|
276 |
+
|
277 |
+
return_data = {**inputs, "pixel_values": pixel_values}
|
278 |
+
|
279 |
+
if return_token_type_ids:
|
280 |
+
labels = inputs["input_ids"].masked_fill(inputs["token_type_ids"] == 0, -100)
|
281 |
+
return_data.update({"labels": labels})
|
282 |
+
return BatchFeature(data=return_data)
|
283 |
+
|
284 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Florence2
|
285 |
+
def batch_decode(self, *args, **kwargs):
|
286 |
+
"""
|
287 |
+
This method forwards all its arguments to BartTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
288 |
+
refer to the docstring of this method for more information.
|
289 |
+
"""
|
290 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
291 |
+
|
292 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Florence2
|
293 |
+
def decode(self, *args, **kwargs):
|
294 |
+
"""
|
295 |
+
This method forwards all its arguments to BartTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
296 |
+
the docstring of this method for more information.
|
297 |
+
"""
|
298 |
+
return self.tokenizer.decode(*args, **kwargs)
|
299 |
+
|
300 |
+
@property
|
301 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names with CLIP->Florence2
|
302 |
+
def model_input_names(self):
|
303 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
304 |
+
image_processor_input_names = self.image_processor.model_input_names
|
305 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
306 |
+
|
307 |
+
def post_process_generation(self, text, task, image_size):
|
308 |
+
"""
|
309 |
+
Post-process the output of the model to each of the task outputs.
|
310 |
+
|
311 |
+
Args:
|
312 |
+
text (`str`): The text to post-process.
|
313 |
+
task (`str`): The task to post-process the text for.
|
314 |
+
image_size (`Tuple[int, int]`): The size of the image. height x width.
|
315 |
+
"""
|
316 |
+
|
317 |
+
task_answer_post_processing_type = self.tasks_answer_post_processing_type.get(task, 'pure_text')
|
318 |
+
task_answer = self.post_processor(
|
319 |
+
text=text,
|
320 |
+
image_size=image_size,
|
321 |
+
parse_tasks=task_answer_post_processing_type,
|
322 |
+
)[task_answer_post_processing_type]
|
323 |
+
|
324 |
+
if task_answer_post_processing_type == 'pure_text':
|
325 |
+
final_answer = task_answer
|
326 |
+
# remove the special tokens
|
327 |
+
final_answer = final_answer.replace('<s>', '').replace('</s>', '')
|
328 |
+
elif task_answer_post_processing_type in ['od', 'description_with_bboxes', 'bboxes']:
|
329 |
+
od_instances = task_answer
|
330 |
+
bboxes_od = [_od_instance['bbox'] for _od_instance in od_instances]
|
331 |
+
labels_od = [str(_od_instance['cat_name']) for _od_instance in od_instances]
|
332 |
+
final_answer = {'bboxes': bboxes_od, 'labels': labels_od}
|
333 |
+
elif task_answer_post_processing_type in ['ocr']:
|
334 |
+
bboxes = [_od_instance['quad_box'] for _od_instance in task_answer]
|
335 |
+
labels = [str(_od_instance['text']) for _od_instance in task_answer]
|
336 |
+
final_answer = {'quad_boxes': bboxes, 'labels': labels}
|
337 |
+
elif task_answer_post_processing_type in ['phrase_grounding']:
|
338 |
+
bboxes = []
|
339 |
+
labels = []
|
340 |
+
for _grounded_phrase in task_answer:
|
341 |
+
for _bbox in _grounded_phrase['bbox']:
|
342 |
+
bboxes.append(_bbox)
|
343 |
+
labels.append(_grounded_phrase['cat_name'])
|
344 |
+
final_answer = {'bboxes': bboxes, 'labels': labels}
|
345 |
+
elif task_answer_post_processing_type in ['description_with_polygons', 'polygons']:
|
346 |
+
labels = []
|
347 |
+
polygons = []
|
348 |
+
for result in task_answer:
|
349 |
+
label = result['cat_name']
|
350 |
+
_polygons = result['polygons']
|
351 |
+
labels.append(label)
|
352 |
+
polygons.append(_polygons)
|
353 |
+
final_answer = {'polygons': polygons, 'labels': labels}
|
354 |
+
elif task_answer_post_processing_type in ['description_with_bboxes_or_polygons']:
|
355 |
+
bboxes = []
|
356 |
+
bboxes_labels = []
|
357 |
+
polygons = []
|
358 |
+
polygons_labels = []
|
359 |
+
for result in task_answer:
|
360 |
+
label = result['cat_name']
|
361 |
+
if 'polygons' in result:
|
362 |
+
_polygons = result['polygons']
|
363 |
+
polygons.append(_polygons)
|
364 |
+
polygons_labels.append(label)
|
365 |
+
else:
|
366 |
+
_bbox = result['bbox']
|
367 |
+
bboxes.append(_bbox)
|
368 |
+
bboxes_labels.append(label)
|
369 |
+
final_answer = {'bboxes': bboxes, 'bboxes_labels': bboxes_labels, 'polygons': polygons, 'polygons_labels': polygons_labels}
|
370 |
+
else:
|
371 |
+
raise ValueError('Unknown task answer post processing type: {}'.format(task_answer_post_processing_type))
|
372 |
+
|
373 |
+
final_answer = {
|
374 |
+
task: final_answer}
|
375 |
+
return final_answer
|
376 |
+
|
377 |
+
class BoxQuantizer(object):
|
378 |
+
def __init__(self, mode, bins):
|
379 |
+
self.mode = mode
|
380 |
+
self.bins = bins
|
381 |
+
|
382 |
+
def quantize(self, boxes: torch.Tensor, size):
|
383 |
+
bins_w, bins_h = self.bins # Quantization bins.
|
384 |
+
size_w, size_h = size # Original image size.
|
385 |
+
size_per_bin_w = size_w / bins_w
|
386 |
+
size_per_bin_h = size_h / bins_h
|
387 |
+
xmin, ymin, xmax, ymax = boxes.split(1, dim=-1) # Shape: 4 * [N, 1].
|
388 |
+
|
389 |
+
if self.mode == 'floor':
|
390 |
+
quantized_xmin = (
|
391 |
+
xmin / size_per_bin_w).floor().clamp(0, bins_w - 1)
|
392 |
+
quantized_ymin = (
|
393 |
+
ymin / size_per_bin_h).floor().clamp(0, bins_h - 1)
|
394 |
+
quantized_xmax = (
|
395 |
+
xmax / size_per_bin_w).floor().clamp(0, bins_w - 1)
|
396 |
+
quantized_ymax = (
|
397 |
+
ymax / size_per_bin_h).floor().clamp(0, bins_h - 1)
|
398 |
+
|
399 |
+
elif self.mode == 'round':
|
400 |
+
raise NotImplementedError()
|
401 |
+
|
402 |
+
else:
|
403 |
+
raise ValueError('Incorrect quantization type.')
|
404 |
+
|
405 |
+
quantized_boxes = torch.cat(
|
406 |
+
(quantized_xmin, quantized_ymin, quantized_xmax, quantized_ymax), dim=-1
|
407 |
+
).int()
|
408 |
+
|
409 |
+
return quantized_boxes
|
410 |
+
|
411 |
+
def dequantize(self, boxes: torch.Tensor, size):
|
412 |
+
bins_w, bins_h = self.bins # Quantization bins.
|
413 |
+
size_w, size_h = size # Original image size.
|
414 |
+
size_per_bin_w = size_w / bins_w
|
415 |
+
size_per_bin_h = size_h / bins_h
|
416 |
+
xmin, ymin, xmax, ymax = boxes.split(1, dim=-1) # Shape: 4 * [N, 1].
|
417 |
+
|
418 |
+
if self.mode == 'floor':
|
419 |
+
# Add 0.5 to use the center position of the bin as the coordinate.
|
420 |
+
dequantized_xmin = (xmin + 0.5) * size_per_bin_w
|
421 |
+
dequantized_ymin = (ymin + 0.5) * size_per_bin_h
|
422 |
+
dequantized_xmax = (xmax + 0.5) * size_per_bin_w
|
423 |
+
dequantized_ymax = (ymax + 0.5) * size_per_bin_h
|
424 |
+
|
425 |
+
elif self.mode == 'round':
|
426 |
+
raise NotImplementedError()
|
427 |
+
|
428 |
+
else:
|
429 |
+
raise ValueError('Incorrect quantization type.')
|
430 |
+
|
431 |
+
dequantized_boxes = torch.cat(
|
432 |
+
(dequantized_xmin, dequantized_ymin,
|
433 |
+
dequantized_xmax, dequantized_ymax), dim=-1
|
434 |
+
)
|
435 |
+
|
436 |
+
return dequantized_boxes
|
437 |
+
|
438 |
+
|
439 |
+
class CoordinatesQuantizer(object):
|
440 |
+
"""
|
441 |
+
Quantize coornidates (Nx2)
|
442 |
+
"""
|
443 |
+
|
444 |
+
def __init__(self, mode, bins):
|
445 |
+
self.mode = mode
|
446 |
+
self.bins = bins
|
447 |
+
|
448 |
+
def quantize(self, coordinates: torch.Tensor, size):
|
449 |
+
bins_w, bins_h = self.bins # Quantization bins.
|
450 |
+
size_w, size_h = size # Original image size.
|
451 |
+
size_per_bin_w = size_w / bins_w
|
452 |
+
size_per_bin_h = size_h / bins_h
|
453 |
+
assert coordinates.shape[-1] == 2, 'coordinates should be shape (N, 2)'
|
454 |
+
x, y = coordinates.split(1, dim=-1) # Shape: 4 * [N, 1].
|
455 |
+
|
456 |
+
if self.mode == 'floor':
|
457 |
+
quantized_x = (x / size_per_bin_w).floor().clamp(0, bins_w - 1)
|
458 |
+
quantized_y = (y / size_per_bin_h).floor().clamp(0, bins_h - 1)
|
459 |
+
|
460 |
+
elif self.mode == 'round':
|
461 |
+
raise NotImplementedError()
|
462 |
+
|
463 |
+
else:
|
464 |
+
raise ValueError('Incorrect quantization type.')
|
465 |
+
|
466 |
+
quantized_coordinates = torch.cat(
|
467 |
+
(quantized_x, quantized_y), dim=-1
|
468 |
+
).int()
|
469 |
+
|
470 |
+
return quantized_coordinates
|
471 |
+
|
472 |
+
def dequantize(self, coordinates: torch.Tensor, size):
|
473 |
+
bins_w, bins_h = self.bins # Quantization bins.
|
474 |
+
size_w, size_h = size # Original image size.
|
475 |
+
size_per_bin_w = size_w / bins_w
|
476 |
+
size_per_bin_h = size_h / bins_h
|
477 |
+
assert coordinates.shape[-1] == 2, 'coordinates should be shape (N, 2)'
|
478 |
+
x, y = coordinates.split(1, dim=-1) # Shape: 4 * [N, 1].
|
479 |
+
|
480 |
+
if self.mode == 'floor':
|
481 |
+
# Add 0.5 to use the center position of the bin as the coordinate.
|
482 |
+
dequantized_x = (x + 0.5) * size_per_bin_w
|
483 |
+
dequantized_y = (y + 0.5) * size_per_bin_h
|
484 |
+
|
485 |
+
elif self.mode == 'round':
|
486 |
+
raise NotImplementedError()
|
487 |
+
|
488 |
+
else:
|
489 |
+
raise ValueError('Incorrect quantization type.')
|
490 |
+
|
491 |
+
dequantized_coordinates = torch.cat(
|
492 |
+
(dequantized_x, dequantized_y), dim=-1
|
493 |
+
)
|
494 |
+
|
495 |
+
return dequantized_coordinates
|
496 |
+
|
497 |
+
|
498 |
+
class Florence2PostProcesser(object):
|
499 |
+
"""
|
500 |
+
Florence-2 post process for converting text prediction to various tasks results.
|
501 |
+
|
502 |
+
Args:
|
503 |
+
config: A dict of configs.
|
504 |
+
tokenizer: A tokenizer for decoding text to spans.
|
505 |
+
sample config:
|
506 |
+
UNIFIED_POST_PROCESS:
|
507 |
+
# commom configs
|
508 |
+
NUM_BBOX_HEIGHT_BINS: 1000
|
509 |
+
NUM_BBOX_WIDTH_BINS: 1000
|
510 |
+
COORDINATES_HEIGHT_BINS: 1000
|
511 |
+
COORDINATES_WIDTH_BINS: 1000
|
512 |
+
# task specific configs, override the common configs
|
513 |
+
PRASE_TASKS:
|
514 |
+
- TASK_NAME: 'video_dense_caption'
|
515 |
+
PATTERN: 'r<time_(\d+)><time_(\d+)>([a-zA-Z0-9 ]+)'
|
516 |
+
SCORE_MODE: 'avg_cat_name_scores'
|
517 |
+
NUM_BINS: 100
|
518 |
+
- TASK_NAME: 'od'
|
519 |
+
PATTERN: 'r<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>([a-zA-Z0-9 ]+)'
|
520 |
+
SCORE_MODE: 'avg_cat_name_scores'
|
521 |
+
|
522 |
+
Returns:
|
523 |
+
parsed_dict (dict): A dict of parsed results.
|
524 |
+
"""
|
525 |
+
def __init__(
|
526 |
+
self,
|
527 |
+
tokenizer=None
|
528 |
+
):
|
529 |
+
parse_tasks = []
|
530 |
+
parse_task_configs = {}
|
531 |
+
config = self._create_default_config()
|
532 |
+
for task in config['PARSE_TASKS']:
|
533 |
+
parse_tasks.append(task['TASK_NAME'])
|
534 |
+
parse_task_configs[task['TASK_NAME']] = task
|
535 |
+
|
536 |
+
self.config = config
|
537 |
+
self.parse_tasks = parse_tasks
|
538 |
+
self.parse_tasks_configs = parse_task_configs
|
539 |
+
|
540 |
+
self.tokenizer = tokenizer
|
541 |
+
if self.tokenizer is not None:
|
542 |
+
self.all_special_tokens = set(self.tokenizer.all_special_tokens)
|
543 |
+
|
544 |
+
self.init_quantizers()
|
545 |
+
self.black_list_of_phrase_grounding = self._create_black_list_of_phrase_grounding()
|
546 |
+
|
547 |
+
def _create_black_list_of_phrase_grounding(self):
|
548 |
+
black_list = {}
|
549 |
+
|
550 |
+
if 'phrase_grounding' in self.parse_tasks and self.parse_tasks_configs['phrase_grounding']['FILTER_BY_BLACK_LIST']:
|
551 |
+
black_list = set(
|
552 |
+
['it', 'I', 'me', 'mine',
|
553 |
+
'you', 'your', 'yours',
|
554 |
+
'he', 'him', 'his',
|
555 |
+
'she', 'her', 'hers',
|
556 |
+
'they', 'them', 'their', 'theirs',
|
557 |
+
'one', 'oneself',
|
558 |
+
'we', 'us', 'our', 'ours',
|
559 |
+
'you', 'your', 'yours',
|
560 |
+
'they', 'them', 'their', 'theirs',
|
561 |
+
'mine', 'yours', 'his', 'hers', 'its',
|
562 |
+
'ours', 'yours', 'theirs',
|
563 |
+
'myself', 'yourself', 'himself', 'herself', 'itself',
|
564 |
+
'ourselves', 'yourselves', 'themselves',
|
565 |
+
'this', 'that',
|
566 |
+
'these', 'those',
|
567 |
+
'who', 'whom', 'whose', 'which', 'what',
|
568 |
+
'who', 'whom', 'whose', 'which', 'that',
|
569 |
+
'all', 'another', 'any', 'anybody', 'anyone', 'anything',
|
570 |
+
'each', 'everybody', 'everyone', 'everything',
|
571 |
+
'few', 'many', 'nobody', 'none', 'one', 'several',
|
572 |
+
'some', 'somebody', 'someone', 'something',
|
573 |
+
'each other', 'one another',
|
574 |
+
'myself', 'yourself', 'himself', 'herself', 'itself',
|
575 |
+
'ourselves', 'yourselves', 'themselves',
|
576 |
+
'the image', 'image', 'images', 'the', 'a', 'an', 'a group',
|
577 |
+
'other objects', 'lots', 'a set',
|
578 |
+
]
|
579 |
+
)
|
580 |
+
|
581 |
+
return black_list
|
582 |
+
|
583 |
+
def _create_default_config(self):
|
584 |
+
config = {
|
585 |
+
'NUM_BBOX_HEIGHT_BINS': 1000,
|
586 |
+
'NUM_BBOX_WIDTH_BINS': 1000,
|
587 |
+
'BOX_QUANTIZATION_MODE': 'floor',
|
588 |
+
'COORDINATES_HEIGHT_BINS': 1000,
|
589 |
+
'COORDINATES_WIDTH_BINS': 1000,
|
590 |
+
'COORDINATES_QUANTIZATION_MODE': 'floor',
|
591 |
+
'PARSE_TASKS': [
|
592 |
+
{
|
593 |
+
'TASK_NAME': 'od',
|
594 |
+
'PATTERN': r'([a-zA-Z0-9 ]+)<loc_(\\d+)><loc_(\\d+)><loc_(\\d+)><loc_(\\d+)>'
|
595 |
+
},
|
596 |
+
{
|
597 |
+
'TASK_NAME': 'ocr',
|
598 |
+
'PATTERN': r'(.+?)<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>',
|
599 |
+
'AREA_THRESHOLD': 0.00
|
600 |
+
},
|
601 |
+
{
|
602 |
+
'TASK_NAME': 'phrase_grounding',
|
603 |
+
'FILTER_BY_BLACK_LIST': True
|
604 |
+
},
|
605 |
+
{
|
606 |
+
'TASK_NAME': 'pure_text',
|
607 |
+
},
|
608 |
+
{
|
609 |
+
'TASK_NAME': 'description_with_bboxes',
|
610 |
+
},
|
611 |
+
{
|
612 |
+
'TASK_NAME': 'description_with_polygons',
|
613 |
+
},
|
614 |
+
{
|
615 |
+
'TASK_NAME': 'polygons',
|
616 |
+
},
|
617 |
+
{
|
618 |
+
'TASK_NAME': 'bboxes',
|
619 |
+
},
|
620 |
+
{
|
621 |
+
'TASK_NAME': 'description_with_bboxes_or_polygons',
|
622 |
+
}
|
623 |
+
]
|
624 |
+
}
|
625 |
+
|
626 |
+
return config
|
627 |
+
|
628 |
+
def init_quantizers(self):
|
629 |
+
# we have box_quantizer (od, grounding) and coordinates_quantizer (ocr, referring_segmentation)
|
630 |
+
num_bbox_height_bins = self.config.get('NUM_BBOX_HEIGHT_BINS', 1000)
|
631 |
+
num_bbox_width_bins = self.config.get('NUM_BBOX_WIDTH_BINS', 1000)
|
632 |
+
box_quantization_mode = self.config.get('BOX_QUANTIZATION_MODE', 'floor')
|
633 |
+
self.box_quantizer = BoxQuantizer(
|
634 |
+
box_quantization_mode,
|
635 |
+
(num_bbox_width_bins, num_bbox_height_bins),
|
636 |
+
)
|
637 |
+
|
638 |
+
num_bbox_height_bins = self.config['COORDINATES_HEIGHT_BINS'] if 'COORDINATES_HEIGHT_BINS' in self.config else self.config.get('NUM_BBOX_HEIGHT_BINS', 1000)
|
639 |
+
num_bbox_width_bins = self.config['COORDINATES_WIDTH_BINS'] if 'COORDINATES_WIDTH_BINS' in self.config else self.config.get('NUM_BBOX_WIDTH_BINS', 1000)
|
640 |
+
box_quantization_mode = self.config.get('COORDINATES_QUANTIZATION_MODE') if 'COORDINATES_QUANTIZATION_MODE' in self.config else self.config.get('BOX_QUANTIZATION_MODE', 'floor')
|
641 |
+
self.coordinates_quantizer = CoordinatesQuantizer(
|
642 |
+
box_quantization_mode,
|
643 |
+
(num_bbox_width_bins, num_bbox_height_bins),
|
644 |
+
)
|
645 |
+
|
646 |
+
def decode_with_spans(self, tokenizer, token_ids):
|
647 |
+
filtered_tokens = tokenizer.convert_ids_to_tokens(
|
648 |
+
token_ids, skip_special_tokens=False)
|
649 |
+
assert len(filtered_tokens) == len(token_ids)
|
650 |
+
|
651 |
+
# To avoid mixing byte-level and unicode for byte-level BPT
|
652 |
+
# we need to build string separately for added tokens and byte-level tokens
|
653 |
+
# cf. https://github.com/huggingface/transformers/issues/1133
|
654 |
+
sub_texts = []
|
655 |
+
for token in filtered_tokens:
|
656 |
+
if token in self.all_special_tokens:
|
657 |
+
sub_texts.append(token)
|
658 |
+
else:
|
659 |
+
if isinstance(tokenizer, (BartTokenizer, BartTokenizerFast)):
|
660 |
+
sub_text = tokenizer.convert_tokens_to_string([token])
|
661 |
+
elif isinstance(tokenizer, (T5Tokenizer, T5TokenizerFast)):
|
662 |
+
# Ref: https://github.com/google/sentencepiece#whitespace-is-treated-as-a-basic-symbol
|
663 |
+
# Note: Do not strip sub_text as it may have functional whitespace
|
664 |
+
sub_text = token.replace('▁', ' ')
|
665 |
+
else:
|
666 |
+
raise ValueError(f'type {type(tokenizer)} not supported')
|
667 |
+
sub_texts.append(sub_text)
|
668 |
+
|
669 |
+
text = ''
|
670 |
+
spans = []
|
671 |
+
for sub_text in sub_texts:
|
672 |
+
span = (len(text), len(text) + len(sub_text)) # [start index, end index).
|
673 |
+
text += sub_text
|
674 |
+
spans.append(span)
|
675 |
+
|
676 |
+
# Text format:
|
677 |
+
# 1. T5Tokenizer/T5TokenizerFast:
|
678 |
+
# "<loc_1><loc_2><loc_3><loc_4> transplanting dog<loc_1><loc_2><loc_3><loc_4> cat</s>"
|
679 |
+
# Equivalent to t5_tokenizer.decode(input_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False, spaces_between_special_tokens=False)
|
680 |
+
# 2. BartTokenizer (need to double check):
|
681 |
+
# "<s><loc_1><loc_2><loc_3><loc_4>transplanting dog<loc_1><loc_2><loc_3><loc_4>cat</s>"
|
682 |
+
# Equivalent to bart_tokenizer.decode(input_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False, spaces_between_special_tokens=False)
|
683 |
+
return text, spans
|
684 |
+
|
685 |
+
def parse_od_from_text_and_spans(
|
686 |
+
self,
|
687 |
+
text,
|
688 |
+
pattern,
|
689 |
+
image_size,
|
690 |
+
phrase_centric=False
|
691 |
+
):
|
692 |
+
parsed = list(re.finditer(pattern, text))
|
693 |
+
|
694 |
+
instances = []
|
695 |
+
for i in range(len(parsed)):
|
696 |
+
# Prepare instance.
|
697 |
+
instance = {}
|
698 |
+
|
699 |
+
if phrase_centric:
|
700 |
+
bbox_bins = [int(parsed[i].group(j)) for j in range(2, 6)]
|
701 |
+
else:
|
702 |
+
bbox_bins = [int(parsed[i].group(j)) for j in range(1, 5)]
|
703 |
+
instance['bbox'] = self.box_quantizer.dequantize(
|
704 |
+
boxes=torch.tensor(bbox_bins),
|
705 |
+
size=image_size
|
706 |
+
).tolist()
|
707 |
+
|
708 |
+
if phrase_centric:
|
709 |
+
instance['cat_name'] = parsed[i].group(1).lower().strip()
|
710 |
+
else:
|
711 |
+
instance['cat_name'] = parsed[i].group(5).lower().strip()
|
712 |
+
instances.append(instance)
|
713 |
+
|
714 |
+
return instances
|
715 |
+
|
716 |
+
def parse_ocr_from_text_and_spans(self,
|
717 |
+
text,
|
718 |
+
pattern,
|
719 |
+
image_size,
|
720 |
+
area_threshold=-1.0,
|
721 |
+
):
|
722 |
+
bboxes = []
|
723 |
+
labels = []
|
724 |
+
text = text.replace('<s>', '')
|
725 |
+
# ocr with regions
|
726 |
+
parsed = re.findall(pattern, text)
|
727 |
+
instances = []
|
728 |
+
image_width, image_height = image_size
|
729 |
+
|
730 |
+
for ocr_line in parsed:
|
731 |
+
ocr_content = ocr_line[0]
|
732 |
+
quad_box = ocr_line[1:]
|
733 |
+
quad_box = [int(i) for i in quad_box]
|
734 |
+
quad_box = self.coordinates_quantizer.dequantize(
|
735 |
+
torch.tensor(np.array(quad_box).reshape(-1, 2)),
|
736 |
+
size=image_size
|
737 |
+
).reshape(-1).tolist()
|
738 |
+
|
739 |
+
if area_threshold > 0:
|
740 |
+
x_coords = [i for i in quad_box[0::2]]
|
741 |
+
y_coords = [i for i in quad_box[1::2]]
|
742 |
+
|
743 |
+
# apply the Shoelace formula
|
744 |
+
area = 0.5 * abs(sum(x_coords[i] * y_coords[i + 1] - x_coords[i + 1] * y_coords[i] for i in range(4 - 1)))
|
745 |
+
|
746 |
+
if area < (image_width * image_height) * area_threshold:
|
747 |
+
continue
|
748 |
+
|
749 |
+
bboxes.append(quad_box)
|
750 |
+
labels.append(ocr_content)
|
751 |
+
instances.append({
|
752 |
+
'quad_box': quad_box,
|
753 |
+
'text': ocr_content,
|
754 |
+
})
|
755 |
+
return instances
|
756 |
+
|
757 |
+
def parse_phrase_grounding_from_text_and_spans(self, text, pattern, image_size):
|
758 |
+
# ignore <s> </s> and <pad>
|
759 |
+
cur_span = 0
|
760 |
+
if text.startswith('<s>'):
|
761 |
+
cur_span += 3
|
762 |
+
|
763 |
+
text = text.replace('<s>', '')
|
764 |
+
text = text.replace('</s>', '')
|
765 |
+
text = text.replace('<pad>', '')
|
766 |
+
|
767 |
+
pattern = r"([^<]+(?:<loc_\d+>){4,})"
|
768 |
+
phrases = re.findall(pattern, text)
|
769 |
+
|
770 |
+
# pattern should be text pattern and od pattern
|
771 |
+
pattern = r'^\s*(.*?)(?=<od>|</od>|<box>|</box>|<bbox>|</bbox>|<loc_)'
|
772 |
+
box_pattern = r'<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>'
|
773 |
+
|
774 |
+
instances = []
|
775 |
+
for pharse_text in phrases:
|
776 |
+
phrase_text_strip = pharse_text.replace('<ground>', '', 1)
|
777 |
+
phrase_text_strip = pharse_text.replace('<obj>', '', 1)
|
778 |
+
|
779 |
+
if phrase_text_strip == '':
|
780 |
+
cur_span += len(pharse_text)
|
781 |
+
continue
|
782 |
+
|
783 |
+
# Prepare instance.
|
784 |
+
instance = {}
|
785 |
+
|
786 |
+
# parse phrase, get string
|
787 |
+
phrase = re.search(pattern, phrase_text_strip)
|
788 |
+
if phrase is None:
|
789 |
+
cur_span += len(pharse_text)
|
790 |
+
continue
|
791 |
+
|
792 |
+
# parse bboxes by box_pattern
|
793 |
+
bboxes_parsed = list(re.finditer(box_pattern, pharse_text))
|
794 |
+
if len(bboxes_parsed) == 0:
|
795 |
+
cur_span += len(pharse_text)
|
796 |
+
continue
|
797 |
+
|
798 |
+
phrase = phrase.group()
|
799 |
+
# remove leading and trailing spaces
|
800 |
+
phrase = phrase.strip()
|
801 |
+
|
802 |
+
if phrase in self.black_list_of_phrase_grounding:
|
803 |
+
cur_span += len(pharse_text)
|
804 |
+
continue
|
805 |
+
|
806 |
+
# a list of list
|
807 |
+
bbox_bins = [[int(_bboxes_parsed.group(j)) for j in range(1, 5)] for _bboxes_parsed in bboxes_parsed]
|
808 |
+
instance['bbox'] = self.box_quantizer.dequantize(
|
809 |
+
boxes=torch.tensor(bbox_bins),
|
810 |
+
size=image_size
|
811 |
+
).tolist()
|
812 |
+
|
813 |
+
# exclude non-ascii characters
|
814 |
+
phrase = phrase.encode('ascii',errors='ignore').decode('ascii')
|
815 |
+
instance['cat_name'] = phrase
|
816 |
+
|
817 |
+
instances.append(instance)
|
818 |
+
|
819 |
+
return instances
|
820 |
+
|
821 |
+
def parse_description_with_bboxes_from_text_and_spans(self, text, pattern, image_size, allow_empty_phrase=False):
|
822 |
+
# temporary parse solution, split by '.'
|
823 |
+
# ignore <s> </s> and <pad>
|
824 |
+
|
825 |
+
text = text.replace('<s>', '')
|
826 |
+
text = text.replace('</s>', '')
|
827 |
+
text = text.replace('<pad>', '')
|
828 |
+
|
829 |
+
if allow_empty_phrase:
|
830 |
+
pattern = rf"(?:(?:<loc_\d+>){{4,}})"
|
831 |
+
else:
|
832 |
+
pattern = r"([^<]+(?:<loc_\d+>){4,})"
|
833 |
+
phrases = re.findall(pattern, text)
|
834 |
+
|
835 |
+
# pattern should be text pattern and od pattern
|
836 |
+
pattern = r'^\s*(.*?)(?=<od>|</od>|<box>|</box>|<bbox>|</bbox>|<loc_)'
|
837 |
+
box_pattern = r'<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>'
|
838 |
+
|
839 |
+
instances = []
|
840 |
+
for pharse_text in phrases:
|
841 |
+
phrase_text_strip = pharse_text.replace('<ground>', '', 1)
|
842 |
+
phrase_text_strip = pharse_text.replace('<obj>', '', 1)
|
843 |
+
|
844 |
+
if phrase_text_strip == '' and not allow_empty_phrase:
|
845 |
+
continue
|
846 |
+
|
847 |
+
# parse phrase, get string
|
848 |
+
phrase = re.search(pattern, phrase_text_strip)
|
849 |
+
if phrase is None:
|
850 |
+
continue
|
851 |
+
|
852 |
+
phrase = phrase.group()
|
853 |
+
# remove leading and trailing spaces
|
854 |
+
phrase = phrase.strip()
|
855 |
+
|
856 |
+
# parse bboxes by box_pattern
|
857 |
+
bboxes_parsed = list(re.finditer(box_pattern, pharse_text))
|
858 |
+
if len(bboxes_parsed) == 0:
|
859 |
+
continue
|
860 |
+
|
861 |
+
# a list of list
|
862 |
+
bbox_bins = [[int(_bboxes_parsed.group(j)) for j in range(1, 5)] for _bboxes_parsed in bboxes_parsed]
|
863 |
+
|
864 |
+
bboxes = self.box_quantizer.dequantize(
|
865 |
+
boxes=torch.tensor(bbox_bins),
|
866 |
+
size=image_size
|
867 |
+
).tolist()
|
868 |
+
|
869 |
+
phrase = phrase.encode('ascii',errors='ignore').decode('ascii')
|
870 |
+
for _bboxes in bboxes:
|
871 |
+
# Prepare instance.
|
872 |
+
instance = {}
|
873 |
+
instance['bbox'] = _bboxes
|
874 |
+
# exclude non-ascii characters
|
875 |
+
instance['cat_name'] = phrase
|
876 |
+
instances.append(instance)
|
877 |
+
|
878 |
+
return instances
|
879 |
+
|
880 |
+
def parse_description_with_polygons_from_text_and_spans(self, text, pattern, image_size,
|
881 |
+
allow_empty_phrase=False,
|
882 |
+
polygon_sep_token='<sep>',
|
883 |
+
polygon_start_token='<poly>',
|
884 |
+
polygon_end_token='</poly>',
|
885 |
+
with_box_at_start=False,
|
886 |
+
):
|
887 |
+
|
888 |
+
# ref_seg format: '<expression><x1><y1><x2><y2><><><sep><><><><>'
|
889 |
+
# ignore <s> </s> and <pad>
|
890 |
+
|
891 |
+
text = text.replace('<s>', '')
|
892 |
+
text = text.replace('</s>', '')
|
893 |
+
text = text.replace('<pad>', '')
|
894 |
+
|
895 |
+
if allow_empty_phrase:
|
896 |
+
pattern = rf"(?:(?:<loc_\d+>|{re.escape(polygon_sep_token)}|{re.escape(polygon_start_token)}|{re.escape(polygon_end_token)}){{4,}})"
|
897 |
+
else:
|
898 |
+
# [^<]+: This part matches one or more characters that are not the < symbol.
|
899 |
+
# The ^ inside the square brackets [] is a negation, meaning it matches anything except <.
|
900 |
+
#
|
901 |
+
pattern = rf"([^<]+(?:<loc_\d+>|{re.escape(polygon_sep_token)}|{re.escape(polygon_start_token)}|{re.escape(polygon_end_token)}){{4,}})"
|
902 |
+
phrases = re.findall(pattern, text)
|
903 |
+
|
904 |
+
phrase_string_pattern = r'^\s*(.*?)(?=<od>|</od>|<box>|</box>|<bbox>|</bbox>|<loc_|<poly>)'
|
905 |
+
box_pattern = rf'((?:<loc_\d+>)+)(?:{re.escape(polygon_sep_token)}|$)'
|
906 |
+
|
907 |
+
# one polygons instance is separated by polygon_start_token and polygon_end_token
|
908 |
+
polygons_instance_pattern = rf'{re.escape(polygon_start_token)}(.*?){re.escape(polygon_end_token)}'
|
909 |
+
|
910 |
+
instances = []
|
911 |
+
for phrase_text in phrases:
|
912 |
+
|
913 |
+
# exclude loc_\d+>
|
914 |
+
# need to get span if want to include category score
|
915 |
+
phrase_text_strip = re.sub(r'^loc_\d+>', '', phrase_text, count=1)
|
916 |
+
|
917 |
+
# phrase = phrase.replace('<poly>', '')
|
918 |
+
# phrase = phrase.replace('poly>', '')
|
919 |
+
|
920 |
+
if phrase_text_strip == '' and not allow_empty_phrase:
|
921 |
+
continue
|
922 |
+
|
923 |
+
|
924 |
+
# parse phrase, get string
|
925 |
+
phrase = re.search(phrase_string_pattern, phrase_text_strip)
|
926 |
+
if phrase is None:
|
927 |
+
continue
|
928 |
+
phrase = phrase.group()
|
929 |
+
# remove leading and trailing spaces
|
930 |
+
phrase = phrase.strip()
|
931 |
+
|
932 |
+
# parse bboxes by box_pattern
|
933 |
+
|
934 |
+
# split by polygon_start_token and polygon_end_token first using polygons_instance_pattern
|
935 |
+
if polygon_start_token in phrase_text and polygon_end_token in phrase_text:
|
936 |
+
polygons_instances_parsed = list(re.finditer(polygons_instance_pattern, phrase_text))
|
937 |
+
else:
|
938 |
+
polygons_instances_parsed = [phrase_text]
|
939 |
+
|
940 |
+
for _polygons_instances_parsed in polygons_instances_parsed:
|
941 |
+
# Prepare instance.
|
942 |
+
instance = {}
|
943 |
+
|
944 |
+
# polygons_parsed= list(re.finditer(box_pattern, phrase_text))
|
945 |
+
if isinstance(_polygons_instances_parsed, str):
|
946 |
+
polygons_parsed= list(re.finditer(box_pattern, _polygons_instances_parsed))
|
947 |
+
else:
|
948 |
+
polygons_parsed= list(re.finditer(box_pattern, _polygons_instances_parsed.group(1)))
|
949 |
+
if len(polygons_parsed) == 0:
|
950 |
+
continue
|
951 |
+
|
952 |
+
# a list of list (polygon)
|
953 |
+
bbox = []
|
954 |
+
polygons = []
|
955 |
+
for _polygon_parsed in polygons_parsed:
|
956 |
+
# group 1: whole <loc_\d+>...</loc_\d+>
|
957 |
+
_polygon = _polygon_parsed.group(1)
|
958 |
+
# parse into list of int
|
959 |
+
_polygon = [int(_loc_parsed.group(1)) for _loc_parsed in re.finditer(r'<loc_(\d+)>', _polygon)]
|
960 |
+
if with_box_at_start and len(bbox) == 0:
|
961 |
+
if len(_polygon) > 4:
|
962 |
+
# no valid bbox prediction
|
963 |
+
bbox = _polygon[:4]
|
964 |
+
_polygon = _polygon[4:]
|
965 |
+
else:
|
966 |
+
bbox = [0, 0, 0, 0]
|
967 |
+
# abandon last element if is not paired
|
968 |
+
if len(_polygon) % 2 == 1:
|
969 |
+
_polygon = _polygon[:-1]
|
970 |
+
|
971 |
+
# reshape into (n, 2)
|
972 |
+
_polygon = self.coordinates_quantizer.dequantize(
|
973 |
+
torch.tensor(np.array(_polygon).reshape(-1, 2)),
|
974 |
+
size=image_size
|
975 |
+
).reshape(-1).tolist()
|
976 |
+
# reshape back
|
977 |
+
polygons.append(_polygon)
|
978 |
+
|
979 |
+
instance['cat_name'] = phrase
|
980 |
+
instance['polygons'] = polygons
|
981 |
+
if len(bbox) != 0:
|
982 |
+
instance['bbox'] = self.box_quantizer.dequantize(
|
983 |
+
boxes=torch.tensor([bbox]),
|
984 |
+
size=image_size
|
985 |
+
).tolist()[0]
|
986 |
+
|
987 |
+
instances.append(instance)
|
988 |
+
|
989 |
+
return instances
|
990 |
+
|
991 |
+
def __call__(
|
992 |
+
self,
|
993 |
+
text=None,
|
994 |
+
image_size=None,
|
995 |
+
parse_tasks=None,
|
996 |
+
):
|
997 |
+
"""
|
998 |
+
Args:
|
999 |
+
text: model outputs
|
1000 |
+
image_size: (width, height)
|
1001 |
+
parse_tasks: a list of tasks to parse, if None, parse all tasks.
|
1002 |
+
|
1003 |
+
"""
|
1004 |
+
if parse_tasks is not None:
|
1005 |
+
if isinstance(parse_tasks, str):
|
1006 |
+
parse_tasks = [parse_tasks]
|
1007 |
+
for _parse_task in parse_tasks:
|
1008 |
+
assert _parse_task in self.parse_tasks, f'parse task {_parse_task} not supported'
|
1009 |
+
|
1010 |
+
# sequence or text should be provided
|
1011 |
+
assert text is not None, 'text should be provided'
|
1012 |
+
|
1013 |
+
parsed_dict = {
|
1014 |
+
'text': text
|
1015 |
+
}
|
1016 |
+
|
1017 |
+
for task in self.parse_tasks:
|
1018 |
+
if parse_tasks is not None and task not in parse_tasks:
|
1019 |
+
continue
|
1020 |
+
|
1021 |
+
pattern = self.parse_tasks_configs[task].get('PATTERN', None)
|
1022 |
+
|
1023 |
+
if task == 'ocr':
|
1024 |
+
instances = self.parse_ocr_from_text_and_spans(
|
1025 |
+
text,
|
1026 |
+
pattern=pattern,
|
1027 |
+
image_size=image_size,
|
1028 |
+
area_threshold=self.parse_tasks_configs[task].get('AREA_THRESHOLD', 0.0),
|
1029 |
+
)
|
1030 |
+
parsed_dict['ocr'] = instances
|
1031 |
+
elif task == 'phrase_grounding':
|
1032 |
+
instances = self.parse_phrase_grounding_from_text_and_spans(
|
1033 |
+
text,
|
1034 |
+
pattern=pattern,
|
1035 |
+
image_size=image_size,
|
1036 |
+
)
|
1037 |
+
parsed_dict['phrase_grounding'] = instances
|
1038 |
+
elif task == 'pure_text':
|
1039 |
+
parsed_dict['pure_text'] = text
|
1040 |
+
elif task == 'description_with_bboxes':
|
1041 |
+
instances = self.parse_description_with_bboxes_from_text_and_spans(
|
1042 |
+
text,
|
1043 |
+
pattern=pattern,
|
1044 |
+
image_size=image_size,
|
1045 |
+
)
|
1046 |
+
parsed_dict['description_with_bboxes'] = instances
|
1047 |
+
elif task == 'description_with_polygons':
|
1048 |
+
instances = self.parse_description_with_polygons_from_text_and_spans(
|
1049 |
+
text,
|
1050 |
+
pattern=pattern,
|
1051 |
+
image_size=image_size,
|
1052 |
+
)
|
1053 |
+
parsed_dict['description_with_polygons'] = instances
|
1054 |
+
elif task == 'polygons':
|
1055 |
+
instances = self.parse_description_with_polygons_from_text_and_spans(
|
1056 |
+
text,
|
1057 |
+
pattern=pattern,
|
1058 |
+
image_size=image_size,
|
1059 |
+
allow_empty_phrase=True,
|
1060 |
+
)
|
1061 |
+
parsed_dict['polygons'] = instances
|
1062 |
+
elif task == 'bboxes':
|
1063 |
+
instances = self.parse_description_with_bboxes_from_text_and_spans(
|
1064 |
+
text,
|
1065 |
+
pattern=pattern,
|
1066 |
+
image_size=image_size,
|
1067 |
+
allow_empty_phrase=True,
|
1068 |
+
)
|
1069 |
+
parsed_dict['bboxes'] = instances
|
1070 |
+
elif task == 'description_with_bboxes_or_polygons':
|
1071 |
+
if '<poly>' in text:
|
1072 |
+
# only support either polygons or bboxes, not both at the same time
|
1073 |
+
instances = self.parse_description_with_polygons_from_text_and_spans(
|
1074 |
+
text,
|
1075 |
+
pattern=pattern,
|
1076 |
+
image_size=image_size,
|
1077 |
+
)
|
1078 |
+
else:
|
1079 |
+
instances = self.parse_description_with_bboxes_from_text_and_spans(
|
1080 |
+
text,
|
1081 |
+
pattern=pattern,
|
1082 |
+
image_size=image_size,
|
1083 |
+
)
|
1084 |
+
parsed_dict['description_with_bboxes_or_polygons'] = instances
|
1085 |
+
else:
|
1086 |
+
raise ValueError("task {} is not supported".format(task))
|
1087 |
+
|
1088 |
+
return parsed_dict
|
processor_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoProcessor": "processing_florence2.Florence2Processor"
|
4 |
+
},
|
5 |
+
"processor_class": "Florence2Processor"
|
6 |
+
}
|
special_tokens_map.json
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.json
CHANGED
@@ -1,14 +1,7 @@
|
|
1 |
{
|
2 |
"version": "1.0",
|
3 |
"truncation": null,
|
4 |
-
"padding":
|
5 |
-
"strategy": "BatchLongest",
|
6 |
-
"direction": "Right",
|
7 |
-
"pad_to_multiple_of": null,
|
8 |
-
"pad_id": 1,
|
9 |
-
"pad_type_id": 0,
|
10 |
-
"pad_token": "<pad>"
|
11 |
-
},
|
12 |
"added_tokens": [
|
13 |
{
|
14 |
"id": 0,
|
|
|
1 |
{
|
2 |
"version": "1.0",
|
3 |
"truncation": null,
|
4 |
+
"padding": null,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
"added_tokens": [
|
6 |
{
|
7 |
"id": 0,
|
tokenizer_config.json
CHANGED
@@ -9258,16 +9258,1047 @@
|
|
9258 |
"</proposal>",
|
9259 |
"<poly>",
|
9260 |
"</poly>",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9261 |
"<and>"
|
9262 |
],
|
|
|
|
|
|
|
9263 |
"bos_token": "<s>",
|
9264 |
"clean_up_tokenization_spaces": true,
|
9265 |
"cls_token": "<s>",
|
9266 |
"eos_token": "</s>",
|
9267 |
"errors": "replace",
|
9268 |
"mask_token": "<mask>",
|
|
|
9269 |
"model_max_length": 1024,
|
|
|
9270 |
"pad_token": "<pad>",
|
|
|
|
|
9271 |
"processor_class": "Florence2Processor",
|
9272 |
"sep_token": "</s>",
|
9273 |
"tokenizer_class": "BartTokenizer",
|
|
|
9258 |
"</proposal>",
|
9259 |
"<poly>",
|
9260 |
"</poly>",
|
9261 |
+
"<and>",
|
9262 |
+
"<od>",
|
9263 |
+
"</od>",
|
9264 |
+
"<ocr>",
|
9265 |
+
"</ocr>",
|
9266 |
+
"<loc_0>",
|
9267 |
+
"<loc_1>",
|
9268 |
+
"<loc_2>",
|
9269 |
+
"<loc_3>",
|
9270 |
+
"<loc_4>",
|
9271 |
+
"<loc_5>",
|
9272 |
+
"<loc_6>",
|
9273 |
+
"<loc_7>",
|
9274 |
+
"<loc_8>",
|
9275 |
+
"<loc_9>",
|
9276 |
+
"<loc_10>",
|
9277 |
+
"<loc_11>",
|
9278 |
+
"<loc_12>",
|
9279 |
+
"<loc_13>",
|
9280 |
+
"<loc_14>",
|
9281 |
+
"<loc_15>",
|
9282 |
+
"<loc_16>",
|
9283 |
+
"<loc_17>",
|
9284 |
+
"<loc_18>",
|
9285 |
+
"<loc_19>",
|
9286 |
+
"<loc_20>",
|
9287 |
+
"<loc_21>",
|
9288 |
+
"<loc_22>",
|
9289 |
+
"<loc_23>",
|
9290 |
+
"<loc_24>",
|
9291 |
+
"<loc_25>",
|
9292 |
+
"<loc_26>",
|
9293 |
+
"<loc_27>",
|
9294 |
+
"<loc_28>",
|
9295 |
+
"<loc_29>",
|
9296 |
+
"<loc_30>",
|
9297 |
+
"<loc_31>",
|
9298 |
+
"<loc_32>",
|
9299 |
+
"<loc_33>",
|
9300 |
+
"<loc_34>",
|
9301 |
+
"<loc_35>",
|
9302 |
+
"<loc_36>",
|
9303 |
+
"<loc_37>",
|
9304 |
+
"<loc_38>",
|
9305 |
+
"<loc_39>",
|
9306 |
+
"<loc_40>",
|
9307 |
+
"<loc_41>",
|
9308 |
+
"<loc_42>",
|
9309 |
+
"<loc_43>",
|
9310 |
+
"<loc_44>",
|
9311 |
+
"<loc_45>",
|
9312 |
+
"<loc_46>",
|
9313 |
+
"<loc_47>",
|
9314 |
+
"<loc_48>",
|
9315 |
+
"<loc_49>",
|
9316 |
+
"<loc_50>",
|
9317 |
+
"<loc_51>",
|
9318 |
+
"<loc_52>",
|
9319 |
+
"<loc_53>",
|
9320 |
+
"<loc_54>",
|
9321 |
+
"<loc_55>",
|
9322 |
+
"<loc_56>",
|
9323 |
+
"<loc_57>",
|
9324 |
+
"<loc_58>",
|
9325 |
+
"<loc_59>",
|
9326 |
+
"<loc_60>",
|
9327 |
+
"<loc_61>",
|
9328 |
+
"<loc_62>",
|
9329 |
+
"<loc_63>",
|
9330 |
+
"<loc_64>",
|
9331 |
+
"<loc_65>",
|
9332 |
+
"<loc_66>",
|
9333 |
+
"<loc_67>",
|
9334 |
+
"<loc_68>",
|
9335 |
+
"<loc_69>",
|
9336 |
+
"<loc_70>",
|
9337 |
+
"<loc_71>",
|
9338 |
+
"<loc_72>",
|
9339 |
+
"<loc_73>",
|
9340 |
+
"<loc_74>",
|
9341 |
+
"<loc_75>",
|
9342 |
+
"<loc_76>",
|
9343 |
+
"<loc_77>",
|
9344 |
+
"<loc_78>",
|
9345 |
+
"<loc_79>",
|
9346 |
+
"<loc_80>",
|
9347 |
+
"<loc_81>",
|
9348 |
+
"<loc_82>",
|
9349 |
+
"<loc_83>",
|
9350 |
+
"<loc_84>",
|
9351 |
+
"<loc_85>",
|
9352 |
+
"<loc_86>",
|
9353 |
+
"<loc_87>",
|
9354 |
+
"<loc_88>",
|
9355 |
+
"<loc_89>",
|
9356 |
+
"<loc_90>",
|
9357 |
+
"<loc_91>",
|
9358 |
+
"<loc_92>",
|
9359 |
+
"<loc_93>",
|
9360 |
+
"<loc_94>",
|
9361 |
+
"<loc_95>",
|
9362 |
+
"<loc_96>",
|
9363 |
+
"<loc_97>",
|
9364 |
+
"<loc_98>",
|
9365 |
+
"<loc_99>",
|
9366 |
+
"<loc_100>",
|
9367 |
+
"<loc_101>",
|
9368 |
+
"<loc_102>",
|
9369 |
+
"<loc_103>",
|
9370 |
+
"<loc_104>",
|
9371 |
+
"<loc_105>",
|
9372 |
+
"<loc_106>",
|
9373 |
+
"<loc_107>",
|
9374 |
+
"<loc_108>",
|
9375 |
+
"<loc_109>",
|
9376 |
+
"<loc_110>",
|
9377 |
+
"<loc_111>",
|
9378 |
+
"<loc_112>",
|
9379 |
+
"<loc_113>",
|
9380 |
+
"<loc_114>",
|
9381 |
+
"<loc_115>",
|
9382 |
+
"<loc_116>",
|
9383 |
+
"<loc_117>",
|
9384 |
+
"<loc_118>",
|
9385 |
+
"<loc_119>",
|
9386 |
+
"<loc_120>",
|
9387 |
+
"<loc_121>",
|
9388 |
+
"<loc_122>",
|
9389 |
+
"<loc_123>",
|
9390 |
+
"<loc_124>",
|
9391 |
+
"<loc_125>",
|
9392 |
+
"<loc_126>",
|
9393 |
+
"<loc_127>",
|
9394 |
+
"<loc_128>",
|
9395 |
+
"<loc_129>",
|
9396 |
+
"<loc_130>",
|
9397 |
+
"<loc_131>",
|
9398 |
+
"<loc_132>",
|
9399 |
+
"<loc_133>",
|
9400 |
+
"<loc_134>",
|
9401 |
+
"<loc_135>",
|
9402 |
+
"<loc_136>",
|
9403 |
+
"<loc_137>",
|
9404 |
+
"<loc_138>",
|
9405 |
+
"<loc_139>",
|
9406 |
+
"<loc_140>",
|
9407 |
+
"<loc_141>",
|
9408 |
+
"<loc_142>",
|
9409 |
+
"<loc_143>",
|
9410 |
+
"<loc_144>",
|
9411 |
+
"<loc_145>",
|
9412 |
+
"<loc_146>",
|
9413 |
+
"<loc_147>",
|
9414 |
+
"<loc_148>",
|
9415 |
+
"<loc_149>",
|
9416 |
+
"<loc_150>",
|
9417 |
+
"<loc_151>",
|
9418 |
+
"<loc_152>",
|
9419 |
+
"<loc_153>",
|
9420 |
+
"<loc_154>",
|
9421 |
+
"<loc_155>",
|
9422 |
+
"<loc_156>",
|
9423 |
+
"<loc_157>",
|
9424 |
+
"<loc_158>",
|
9425 |
+
"<loc_159>",
|
9426 |
+
"<loc_160>",
|
9427 |
+
"<loc_161>",
|
9428 |
+
"<loc_162>",
|
9429 |
+
"<loc_163>",
|
9430 |
+
"<loc_164>",
|
9431 |
+
"<loc_165>",
|
9432 |
+
"<loc_166>",
|
9433 |
+
"<loc_167>",
|
9434 |
+
"<loc_168>",
|
9435 |
+
"<loc_169>",
|
9436 |
+
"<loc_170>",
|
9437 |
+
"<loc_171>",
|
9438 |
+
"<loc_172>",
|
9439 |
+
"<loc_173>",
|
9440 |
+
"<loc_174>",
|
9441 |
+
"<loc_175>",
|
9442 |
+
"<loc_176>",
|
9443 |
+
"<loc_177>",
|
9444 |
+
"<loc_178>",
|
9445 |
+
"<loc_179>",
|
9446 |
+
"<loc_180>",
|
9447 |
+
"<loc_181>",
|
9448 |
+
"<loc_182>",
|
9449 |
+
"<loc_183>",
|
9450 |
+
"<loc_184>",
|
9451 |
+
"<loc_185>",
|
9452 |
+
"<loc_186>",
|
9453 |
+
"<loc_187>",
|
9454 |
+
"<loc_188>",
|
9455 |
+
"<loc_189>",
|
9456 |
+
"<loc_190>",
|
9457 |
+
"<loc_191>",
|
9458 |
+
"<loc_192>",
|
9459 |
+
"<loc_193>",
|
9460 |
+
"<loc_194>",
|
9461 |
+
"<loc_195>",
|
9462 |
+
"<loc_196>",
|
9463 |
+
"<loc_197>",
|
9464 |
+
"<loc_198>",
|
9465 |
+
"<loc_199>",
|
9466 |
+
"<loc_200>",
|
9467 |
+
"<loc_201>",
|
9468 |
+
"<loc_202>",
|
9469 |
+
"<loc_203>",
|
9470 |
+
"<loc_204>",
|
9471 |
+
"<loc_205>",
|
9472 |
+
"<loc_206>",
|
9473 |
+
"<loc_207>",
|
9474 |
+
"<loc_208>",
|
9475 |
+
"<loc_209>",
|
9476 |
+
"<loc_210>",
|
9477 |
+
"<loc_211>",
|
9478 |
+
"<loc_212>",
|
9479 |
+
"<loc_213>",
|
9480 |
+
"<loc_214>",
|
9481 |
+
"<loc_215>",
|
9482 |
+
"<loc_216>",
|
9483 |
+
"<loc_217>",
|
9484 |
+
"<loc_218>",
|
9485 |
+
"<loc_219>",
|
9486 |
+
"<loc_220>",
|
9487 |
+
"<loc_221>",
|
9488 |
+
"<loc_222>",
|
9489 |
+
"<loc_223>",
|
9490 |
+
"<loc_224>",
|
9491 |
+
"<loc_225>",
|
9492 |
+
"<loc_226>",
|
9493 |
+
"<loc_227>",
|
9494 |
+
"<loc_228>",
|
9495 |
+
"<loc_229>",
|
9496 |
+
"<loc_230>",
|
9497 |
+
"<loc_231>",
|
9498 |
+
"<loc_232>",
|
9499 |
+
"<loc_233>",
|
9500 |
+
"<loc_234>",
|
9501 |
+
"<loc_235>",
|
9502 |
+
"<loc_236>",
|
9503 |
+
"<loc_237>",
|
9504 |
+
"<loc_238>",
|
9505 |
+
"<loc_239>",
|
9506 |
+
"<loc_240>",
|
9507 |
+
"<loc_241>",
|
9508 |
+
"<loc_242>",
|
9509 |
+
"<loc_243>",
|
9510 |
+
"<loc_244>",
|
9511 |
+
"<loc_245>",
|
9512 |
+
"<loc_246>",
|
9513 |
+
"<loc_247>",
|
9514 |
+
"<loc_248>",
|
9515 |
+
"<loc_249>",
|
9516 |
+
"<loc_250>",
|
9517 |
+
"<loc_251>",
|
9518 |
+
"<loc_252>",
|
9519 |
+
"<loc_253>",
|
9520 |
+
"<loc_254>",
|
9521 |
+
"<loc_255>",
|
9522 |
+
"<loc_256>",
|
9523 |
+
"<loc_257>",
|
9524 |
+
"<loc_258>",
|
9525 |
+
"<loc_259>",
|
9526 |
+
"<loc_260>",
|
9527 |
+
"<loc_261>",
|
9528 |
+
"<loc_262>",
|
9529 |
+
"<loc_263>",
|
9530 |
+
"<loc_264>",
|
9531 |
+
"<loc_265>",
|
9532 |
+
"<loc_266>",
|
9533 |
+
"<loc_267>",
|
9534 |
+
"<loc_268>",
|
9535 |
+
"<loc_269>",
|
9536 |
+
"<loc_270>",
|
9537 |
+
"<loc_271>",
|
9538 |
+
"<loc_272>",
|
9539 |
+
"<loc_273>",
|
9540 |
+
"<loc_274>",
|
9541 |
+
"<loc_275>",
|
9542 |
+
"<loc_276>",
|
9543 |
+
"<loc_277>",
|
9544 |
+
"<loc_278>",
|
9545 |
+
"<loc_279>",
|
9546 |
+
"<loc_280>",
|
9547 |
+
"<loc_281>",
|
9548 |
+
"<loc_282>",
|
9549 |
+
"<loc_283>",
|
9550 |
+
"<loc_284>",
|
9551 |
+
"<loc_285>",
|
9552 |
+
"<loc_286>",
|
9553 |
+
"<loc_287>",
|
9554 |
+
"<loc_288>",
|
9555 |
+
"<loc_289>",
|
9556 |
+
"<loc_290>",
|
9557 |
+
"<loc_291>",
|
9558 |
+
"<loc_292>",
|
9559 |
+
"<loc_293>",
|
9560 |
+
"<loc_294>",
|
9561 |
+
"<loc_295>",
|
9562 |
+
"<loc_296>",
|
9563 |
+
"<loc_297>",
|
9564 |
+
"<loc_298>",
|
9565 |
+
"<loc_299>",
|
9566 |
+
"<loc_300>",
|
9567 |
+
"<loc_301>",
|
9568 |
+
"<loc_302>",
|
9569 |
+
"<loc_303>",
|
9570 |
+
"<loc_304>",
|
9571 |
+
"<loc_305>",
|
9572 |
+
"<loc_306>",
|
9573 |
+
"<loc_307>",
|
9574 |
+
"<loc_308>",
|
9575 |
+
"<loc_309>",
|
9576 |
+
"<loc_310>",
|
9577 |
+
"<loc_311>",
|
9578 |
+
"<loc_312>",
|
9579 |
+
"<loc_313>",
|
9580 |
+
"<loc_314>",
|
9581 |
+
"<loc_315>",
|
9582 |
+
"<loc_316>",
|
9583 |
+
"<loc_317>",
|
9584 |
+
"<loc_318>",
|
9585 |
+
"<loc_319>",
|
9586 |
+
"<loc_320>",
|
9587 |
+
"<loc_321>",
|
9588 |
+
"<loc_322>",
|
9589 |
+
"<loc_323>",
|
9590 |
+
"<loc_324>",
|
9591 |
+
"<loc_325>",
|
9592 |
+
"<loc_326>",
|
9593 |
+
"<loc_327>",
|
9594 |
+
"<loc_328>",
|
9595 |
+
"<loc_329>",
|
9596 |
+
"<loc_330>",
|
9597 |
+
"<loc_331>",
|
9598 |
+
"<loc_332>",
|
9599 |
+
"<loc_333>",
|
9600 |
+
"<loc_334>",
|
9601 |
+
"<loc_335>",
|
9602 |
+
"<loc_336>",
|
9603 |
+
"<loc_337>",
|
9604 |
+
"<loc_338>",
|
9605 |
+
"<loc_339>",
|
9606 |
+
"<loc_340>",
|
9607 |
+
"<loc_341>",
|
9608 |
+
"<loc_342>",
|
9609 |
+
"<loc_343>",
|
9610 |
+
"<loc_344>",
|
9611 |
+
"<loc_345>",
|
9612 |
+
"<loc_346>",
|
9613 |
+
"<loc_347>",
|
9614 |
+
"<loc_348>",
|
9615 |
+
"<loc_349>",
|
9616 |
+
"<loc_350>",
|
9617 |
+
"<loc_351>",
|
9618 |
+
"<loc_352>",
|
9619 |
+
"<loc_353>",
|
9620 |
+
"<loc_354>",
|
9621 |
+
"<loc_355>",
|
9622 |
+
"<loc_356>",
|
9623 |
+
"<loc_357>",
|
9624 |
+
"<loc_358>",
|
9625 |
+
"<loc_359>",
|
9626 |
+
"<loc_360>",
|
9627 |
+
"<loc_361>",
|
9628 |
+
"<loc_362>",
|
9629 |
+
"<loc_363>",
|
9630 |
+
"<loc_364>",
|
9631 |
+
"<loc_365>",
|
9632 |
+
"<loc_366>",
|
9633 |
+
"<loc_367>",
|
9634 |
+
"<loc_368>",
|
9635 |
+
"<loc_369>",
|
9636 |
+
"<loc_370>",
|
9637 |
+
"<loc_371>",
|
9638 |
+
"<loc_372>",
|
9639 |
+
"<loc_373>",
|
9640 |
+
"<loc_374>",
|
9641 |
+
"<loc_375>",
|
9642 |
+
"<loc_376>",
|
9643 |
+
"<loc_377>",
|
9644 |
+
"<loc_378>",
|
9645 |
+
"<loc_379>",
|
9646 |
+
"<loc_380>",
|
9647 |
+
"<loc_381>",
|
9648 |
+
"<loc_382>",
|
9649 |
+
"<loc_383>",
|
9650 |
+
"<loc_384>",
|
9651 |
+
"<loc_385>",
|
9652 |
+
"<loc_386>",
|
9653 |
+
"<loc_387>",
|
9654 |
+
"<loc_388>",
|
9655 |
+
"<loc_389>",
|
9656 |
+
"<loc_390>",
|
9657 |
+
"<loc_391>",
|
9658 |
+
"<loc_392>",
|
9659 |
+
"<loc_393>",
|
9660 |
+
"<loc_394>",
|
9661 |
+
"<loc_395>",
|
9662 |
+
"<loc_396>",
|
9663 |
+
"<loc_397>",
|
9664 |
+
"<loc_398>",
|
9665 |
+
"<loc_399>",
|
9666 |
+
"<loc_400>",
|
9667 |
+
"<loc_401>",
|
9668 |
+
"<loc_402>",
|
9669 |
+
"<loc_403>",
|
9670 |
+
"<loc_404>",
|
9671 |
+
"<loc_405>",
|
9672 |
+
"<loc_406>",
|
9673 |
+
"<loc_407>",
|
9674 |
+
"<loc_408>",
|
9675 |
+
"<loc_409>",
|
9676 |
+
"<loc_410>",
|
9677 |
+
"<loc_411>",
|
9678 |
+
"<loc_412>",
|
9679 |
+
"<loc_413>",
|
9680 |
+
"<loc_414>",
|
9681 |
+
"<loc_415>",
|
9682 |
+
"<loc_416>",
|
9683 |
+
"<loc_417>",
|
9684 |
+
"<loc_418>",
|
9685 |
+
"<loc_419>",
|
9686 |
+
"<loc_420>",
|
9687 |
+
"<loc_421>",
|
9688 |
+
"<loc_422>",
|
9689 |
+
"<loc_423>",
|
9690 |
+
"<loc_424>",
|
9691 |
+
"<loc_425>",
|
9692 |
+
"<loc_426>",
|
9693 |
+
"<loc_427>",
|
9694 |
+
"<loc_428>",
|
9695 |
+
"<loc_429>",
|
9696 |
+
"<loc_430>",
|
9697 |
+
"<loc_431>",
|
9698 |
+
"<loc_432>",
|
9699 |
+
"<loc_433>",
|
9700 |
+
"<loc_434>",
|
9701 |
+
"<loc_435>",
|
9702 |
+
"<loc_436>",
|
9703 |
+
"<loc_437>",
|
9704 |
+
"<loc_438>",
|
9705 |
+
"<loc_439>",
|
9706 |
+
"<loc_440>",
|
9707 |
+
"<loc_441>",
|
9708 |
+
"<loc_442>",
|
9709 |
+
"<loc_443>",
|
9710 |
+
"<loc_444>",
|
9711 |
+
"<loc_445>",
|
9712 |
+
"<loc_446>",
|
9713 |
+
"<loc_447>",
|
9714 |
+
"<loc_448>",
|
9715 |
+
"<loc_449>",
|
9716 |
+
"<loc_450>",
|
9717 |
+
"<loc_451>",
|
9718 |
+
"<loc_452>",
|
9719 |
+
"<loc_453>",
|
9720 |
+
"<loc_454>",
|
9721 |
+
"<loc_455>",
|
9722 |
+
"<loc_456>",
|
9723 |
+
"<loc_457>",
|
9724 |
+
"<loc_458>",
|
9725 |
+
"<loc_459>",
|
9726 |
+
"<loc_460>",
|
9727 |
+
"<loc_461>",
|
9728 |
+
"<loc_462>",
|
9729 |
+
"<loc_463>",
|
9730 |
+
"<loc_464>",
|
9731 |
+
"<loc_465>",
|
9732 |
+
"<loc_466>",
|
9733 |
+
"<loc_467>",
|
9734 |
+
"<loc_468>",
|
9735 |
+
"<loc_469>",
|
9736 |
+
"<loc_470>",
|
9737 |
+
"<loc_471>",
|
9738 |
+
"<loc_472>",
|
9739 |
+
"<loc_473>",
|
9740 |
+
"<loc_474>",
|
9741 |
+
"<loc_475>",
|
9742 |
+
"<loc_476>",
|
9743 |
+
"<loc_477>",
|
9744 |
+
"<loc_478>",
|
9745 |
+
"<loc_479>",
|
9746 |
+
"<loc_480>",
|
9747 |
+
"<loc_481>",
|
9748 |
+
"<loc_482>",
|
9749 |
+
"<loc_483>",
|
9750 |
+
"<loc_484>",
|
9751 |
+
"<loc_485>",
|
9752 |
+
"<loc_486>",
|
9753 |
+
"<loc_487>",
|
9754 |
+
"<loc_488>",
|
9755 |
+
"<loc_489>",
|
9756 |
+
"<loc_490>",
|
9757 |
+
"<loc_491>",
|
9758 |
+
"<loc_492>",
|
9759 |
+
"<loc_493>",
|
9760 |
+
"<loc_494>",
|
9761 |
+
"<loc_495>",
|
9762 |
+
"<loc_496>",
|
9763 |
+
"<loc_497>",
|
9764 |
+
"<loc_498>",
|
9765 |
+
"<loc_499>",
|
9766 |
+
"<loc_500>",
|
9767 |
+
"<loc_501>",
|
9768 |
+
"<loc_502>",
|
9769 |
+
"<loc_503>",
|
9770 |
+
"<loc_504>",
|
9771 |
+
"<loc_505>",
|
9772 |
+
"<loc_506>",
|
9773 |
+
"<loc_507>",
|
9774 |
+
"<loc_508>",
|
9775 |
+
"<loc_509>",
|
9776 |
+
"<loc_510>",
|
9777 |
+
"<loc_511>",
|
9778 |
+
"<loc_512>",
|
9779 |
+
"<loc_513>",
|
9780 |
+
"<loc_514>",
|
9781 |
+
"<loc_515>",
|
9782 |
+
"<loc_516>",
|
9783 |
+
"<loc_517>",
|
9784 |
+
"<loc_518>",
|
9785 |
+
"<loc_519>",
|
9786 |
+
"<loc_520>",
|
9787 |
+
"<loc_521>",
|
9788 |
+
"<loc_522>",
|
9789 |
+
"<loc_523>",
|
9790 |
+
"<loc_524>",
|
9791 |
+
"<loc_525>",
|
9792 |
+
"<loc_526>",
|
9793 |
+
"<loc_527>",
|
9794 |
+
"<loc_528>",
|
9795 |
+
"<loc_529>",
|
9796 |
+
"<loc_530>",
|
9797 |
+
"<loc_531>",
|
9798 |
+
"<loc_532>",
|
9799 |
+
"<loc_533>",
|
9800 |
+
"<loc_534>",
|
9801 |
+
"<loc_535>",
|
9802 |
+
"<loc_536>",
|
9803 |
+
"<loc_537>",
|
9804 |
+
"<loc_538>",
|
9805 |
+
"<loc_539>",
|
9806 |
+
"<loc_540>",
|
9807 |
+
"<loc_541>",
|
9808 |
+
"<loc_542>",
|
9809 |
+
"<loc_543>",
|
9810 |
+
"<loc_544>",
|
9811 |
+
"<loc_545>",
|
9812 |
+
"<loc_546>",
|
9813 |
+
"<loc_547>",
|
9814 |
+
"<loc_548>",
|
9815 |
+
"<loc_549>",
|
9816 |
+
"<loc_550>",
|
9817 |
+
"<loc_551>",
|
9818 |
+
"<loc_552>",
|
9819 |
+
"<loc_553>",
|
9820 |
+
"<loc_554>",
|
9821 |
+
"<loc_555>",
|
9822 |
+
"<loc_556>",
|
9823 |
+
"<loc_557>",
|
9824 |
+
"<loc_558>",
|
9825 |
+
"<loc_559>",
|
9826 |
+
"<loc_560>",
|
9827 |
+
"<loc_561>",
|
9828 |
+
"<loc_562>",
|
9829 |
+
"<loc_563>",
|
9830 |
+
"<loc_564>",
|
9831 |
+
"<loc_565>",
|
9832 |
+
"<loc_566>",
|
9833 |
+
"<loc_567>",
|
9834 |
+
"<loc_568>",
|
9835 |
+
"<loc_569>",
|
9836 |
+
"<loc_570>",
|
9837 |
+
"<loc_571>",
|
9838 |
+
"<loc_572>",
|
9839 |
+
"<loc_573>",
|
9840 |
+
"<loc_574>",
|
9841 |
+
"<loc_575>",
|
9842 |
+
"<loc_576>",
|
9843 |
+
"<loc_577>",
|
9844 |
+
"<loc_578>",
|
9845 |
+
"<loc_579>",
|
9846 |
+
"<loc_580>",
|
9847 |
+
"<loc_581>",
|
9848 |
+
"<loc_582>",
|
9849 |
+
"<loc_583>",
|
9850 |
+
"<loc_584>",
|
9851 |
+
"<loc_585>",
|
9852 |
+
"<loc_586>",
|
9853 |
+
"<loc_587>",
|
9854 |
+
"<loc_588>",
|
9855 |
+
"<loc_589>",
|
9856 |
+
"<loc_590>",
|
9857 |
+
"<loc_591>",
|
9858 |
+
"<loc_592>",
|
9859 |
+
"<loc_593>",
|
9860 |
+
"<loc_594>",
|
9861 |
+
"<loc_595>",
|
9862 |
+
"<loc_596>",
|
9863 |
+
"<loc_597>",
|
9864 |
+
"<loc_598>",
|
9865 |
+
"<loc_599>",
|
9866 |
+
"<loc_600>",
|
9867 |
+
"<loc_601>",
|
9868 |
+
"<loc_602>",
|
9869 |
+
"<loc_603>",
|
9870 |
+
"<loc_604>",
|
9871 |
+
"<loc_605>",
|
9872 |
+
"<loc_606>",
|
9873 |
+
"<loc_607>",
|
9874 |
+
"<loc_608>",
|
9875 |
+
"<loc_609>",
|
9876 |
+
"<loc_610>",
|
9877 |
+
"<loc_611>",
|
9878 |
+
"<loc_612>",
|
9879 |
+
"<loc_613>",
|
9880 |
+
"<loc_614>",
|
9881 |
+
"<loc_615>",
|
9882 |
+
"<loc_616>",
|
9883 |
+
"<loc_617>",
|
9884 |
+
"<loc_618>",
|
9885 |
+
"<loc_619>",
|
9886 |
+
"<loc_620>",
|
9887 |
+
"<loc_621>",
|
9888 |
+
"<loc_622>",
|
9889 |
+
"<loc_623>",
|
9890 |
+
"<loc_624>",
|
9891 |
+
"<loc_625>",
|
9892 |
+
"<loc_626>",
|
9893 |
+
"<loc_627>",
|
9894 |
+
"<loc_628>",
|
9895 |
+
"<loc_629>",
|
9896 |
+
"<loc_630>",
|
9897 |
+
"<loc_631>",
|
9898 |
+
"<loc_632>",
|
9899 |
+
"<loc_633>",
|
9900 |
+
"<loc_634>",
|
9901 |
+
"<loc_635>",
|
9902 |
+
"<loc_636>",
|
9903 |
+
"<loc_637>",
|
9904 |
+
"<loc_638>",
|
9905 |
+
"<loc_639>",
|
9906 |
+
"<loc_640>",
|
9907 |
+
"<loc_641>",
|
9908 |
+
"<loc_642>",
|
9909 |
+
"<loc_643>",
|
9910 |
+
"<loc_644>",
|
9911 |
+
"<loc_645>",
|
9912 |
+
"<loc_646>",
|
9913 |
+
"<loc_647>",
|
9914 |
+
"<loc_648>",
|
9915 |
+
"<loc_649>",
|
9916 |
+
"<loc_650>",
|
9917 |
+
"<loc_651>",
|
9918 |
+
"<loc_652>",
|
9919 |
+
"<loc_653>",
|
9920 |
+
"<loc_654>",
|
9921 |
+
"<loc_655>",
|
9922 |
+
"<loc_656>",
|
9923 |
+
"<loc_657>",
|
9924 |
+
"<loc_658>",
|
9925 |
+
"<loc_659>",
|
9926 |
+
"<loc_660>",
|
9927 |
+
"<loc_661>",
|
9928 |
+
"<loc_662>",
|
9929 |
+
"<loc_663>",
|
9930 |
+
"<loc_664>",
|
9931 |
+
"<loc_665>",
|
9932 |
+
"<loc_666>",
|
9933 |
+
"<loc_667>",
|
9934 |
+
"<loc_668>",
|
9935 |
+
"<loc_669>",
|
9936 |
+
"<loc_670>",
|
9937 |
+
"<loc_671>",
|
9938 |
+
"<loc_672>",
|
9939 |
+
"<loc_673>",
|
9940 |
+
"<loc_674>",
|
9941 |
+
"<loc_675>",
|
9942 |
+
"<loc_676>",
|
9943 |
+
"<loc_677>",
|
9944 |
+
"<loc_678>",
|
9945 |
+
"<loc_679>",
|
9946 |
+
"<loc_680>",
|
9947 |
+
"<loc_681>",
|
9948 |
+
"<loc_682>",
|
9949 |
+
"<loc_683>",
|
9950 |
+
"<loc_684>",
|
9951 |
+
"<loc_685>",
|
9952 |
+
"<loc_686>",
|
9953 |
+
"<loc_687>",
|
9954 |
+
"<loc_688>",
|
9955 |
+
"<loc_689>",
|
9956 |
+
"<loc_690>",
|
9957 |
+
"<loc_691>",
|
9958 |
+
"<loc_692>",
|
9959 |
+
"<loc_693>",
|
9960 |
+
"<loc_694>",
|
9961 |
+
"<loc_695>",
|
9962 |
+
"<loc_696>",
|
9963 |
+
"<loc_697>",
|
9964 |
+
"<loc_698>",
|
9965 |
+
"<loc_699>",
|
9966 |
+
"<loc_700>",
|
9967 |
+
"<loc_701>",
|
9968 |
+
"<loc_702>",
|
9969 |
+
"<loc_703>",
|
9970 |
+
"<loc_704>",
|
9971 |
+
"<loc_705>",
|
9972 |
+
"<loc_706>",
|
9973 |
+
"<loc_707>",
|
9974 |
+
"<loc_708>",
|
9975 |
+
"<loc_709>",
|
9976 |
+
"<loc_710>",
|
9977 |
+
"<loc_711>",
|
9978 |
+
"<loc_712>",
|
9979 |
+
"<loc_713>",
|
9980 |
+
"<loc_714>",
|
9981 |
+
"<loc_715>",
|
9982 |
+
"<loc_716>",
|
9983 |
+
"<loc_717>",
|
9984 |
+
"<loc_718>",
|
9985 |
+
"<loc_719>",
|
9986 |
+
"<loc_720>",
|
9987 |
+
"<loc_721>",
|
9988 |
+
"<loc_722>",
|
9989 |
+
"<loc_723>",
|
9990 |
+
"<loc_724>",
|
9991 |
+
"<loc_725>",
|
9992 |
+
"<loc_726>",
|
9993 |
+
"<loc_727>",
|
9994 |
+
"<loc_728>",
|
9995 |
+
"<loc_729>",
|
9996 |
+
"<loc_730>",
|
9997 |
+
"<loc_731>",
|
9998 |
+
"<loc_732>",
|
9999 |
+
"<loc_733>",
|
10000 |
+
"<loc_734>",
|
10001 |
+
"<loc_735>",
|
10002 |
+
"<loc_736>",
|
10003 |
+
"<loc_737>",
|
10004 |
+
"<loc_738>",
|
10005 |
+
"<loc_739>",
|
10006 |
+
"<loc_740>",
|
10007 |
+
"<loc_741>",
|
10008 |
+
"<loc_742>",
|
10009 |
+
"<loc_743>",
|
10010 |
+
"<loc_744>",
|
10011 |
+
"<loc_745>",
|
10012 |
+
"<loc_746>",
|
10013 |
+
"<loc_747>",
|
10014 |
+
"<loc_748>",
|
10015 |
+
"<loc_749>",
|
10016 |
+
"<loc_750>",
|
10017 |
+
"<loc_751>",
|
10018 |
+
"<loc_752>",
|
10019 |
+
"<loc_753>",
|
10020 |
+
"<loc_754>",
|
10021 |
+
"<loc_755>",
|
10022 |
+
"<loc_756>",
|
10023 |
+
"<loc_757>",
|
10024 |
+
"<loc_758>",
|
10025 |
+
"<loc_759>",
|
10026 |
+
"<loc_760>",
|
10027 |
+
"<loc_761>",
|
10028 |
+
"<loc_762>",
|
10029 |
+
"<loc_763>",
|
10030 |
+
"<loc_764>",
|
10031 |
+
"<loc_765>",
|
10032 |
+
"<loc_766>",
|
10033 |
+
"<loc_767>",
|
10034 |
+
"<loc_768>",
|
10035 |
+
"<loc_769>",
|
10036 |
+
"<loc_770>",
|
10037 |
+
"<loc_771>",
|
10038 |
+
"<loc_772>",
|
10039 |
+
"<loc_773>",
|
10040 |
+
"<loc_774>",
|
10041 |
+
"<loc_775>",
|
10042 |
+
"<loc_776>",
|
10043 |
+
"<loc_777>",
|
10044 |
+
"<loc_778>",
|
10045 |
+
"<loc_779>",
|
10046 |
+
"<loc_780>",
|
10047 |
+
"<loc_781>",
|
10048 |
+
"<loc_782>",
|
10049 |
+
"<loc_783>",
|
10050 |
+
"<loc_784>",
|
10051 |
+
"<loc_785>",
|
10052 |
+
"<loc_786>",
|
10053 |
+
"<loc_787>",
|
10054 |
+
"<loc_788>",
|
10055 |
+
"<loc_789>",
|
10056 |
+
"<loc_790>",
|
10057 |
+
"<loc_791>",
|
10058 |
+
"<loc_792>",
|
10059 |
+
"<loc_793>",
|
10060 |
+
"<loc_794>",
|
10061 |
+
"<loc_795>",
|
10062 |
+
"<loc_796>",
|
10063 |
+
"<loc_797>",
|
10064 |
+
"<loc_798>",
|
10065 |
+
"<loc_799>",
|
10066 |
+
"<loc_800>",
|
10067 |
+
"<loc_801>",
|
10068 |
+
"<loc_802>",
|
10069 |
+
"<loc_803>",
|
10070 |
+
"<loc_804>",
|
10071 |
+
"<loc_805>",
|
10072 |
+
"<loc_806>",
|
10073 |
+
"<loc_807>",
|
10074 |
+
"<loc_808>",
|
10075 |
+
"<loc_809>",
|
10076 |
+
"<loc_810>",
|
10077 |
+
"<loc_811>",
|
10078 |
+
"<loc_812>",
|
10079 |
+
"<loc_813>",
|
10080 |
+
"<loc_814>",
|
10081 |
+
"<loc_815>",
|
10082 |
+
"<loc_816>",
|
10083 |
+
"<loc_817>",
|
10084 |
+
"<loc_818>",
|
10085 |
+
"<loc_819>",
|
10086 |
+
"<loc_820>",
|
10087 |
+
"<loc_821>",
|
10088 |
+
"<loc_822>",
|
10089 |
+
"<loc_823>",
|
10090 |
+
"<loc_824>",
|
10091 |
+
"<loc_825>",
|
10092 |
+
"<loc_826>",
|
10093 |
+
"<loc_827>",
|
10094 |
+
"<loc_828>",
|
10095 |
+
"<loc_829>",
|
10096 |
+
"<loc_830>",
|
10097 |
+
"<loc_831>",
|
10098 |
+
"<loc_832>",
|
10099 |
+
"<loc_833>",
|
10100 |
+
"<loc_834>",
|
10101 |
+
"<loc_835>",
|
10102 |
+
"<loc_836>",
|
10103 |
+
"<loc_837>",
|
10104 |
+
"<loc_838>",
|
10105 |
+
"<loc_839>",
|
10106 |
+
"<loc_840>",
|
10107 |
+
"<loc_841>",
|
10108 |
+
"<loc_842>",
|
10109 |
+
"<loc_843>",
|
10110 |
+
"<loc_844>",
|
10111 |
+
"<loc_845>",
|
10112 |
+
"<loc_846>",
|
10113 |
+
"<loc_847>",
|
10114 |
+
"<loc_848>",
|
10115 |
+
"<loc_849>",
|
10116 |
+
"<loc_850>",
|
10117 |
+
"<loc_851>",
|
10118 |
+
"<loc_852>",
|
10119 |
+
"<loc_853>",
|
10120 |
+
"<loc_854>",
|
10121 |
+
"<loc_855>",
|
10122 |
+
"<loc_856>",
|
10123 |
+
"<loc_857>",
|
10124 |
+
"<loc_858>",
|
10125 |
+
"<loc_859>",
|
10126 |
+
"<loc_860>",
|
10127 |
+
"<loc_861>",
|
10128 |
+
"<loc_862>",
|
10129 |
+
"<loc_863>",
|
10130 |
+
"<loc_864>",
|
10131 |
+
"<loc_865>",
|
10132 |
+
"<loc_866>",
|
10133 |
+
"<loc_867>",
|
10134 |
+
"<loc_868>",
|
10135 |
+
"<loc_869>",
|
10136 |
+
"<loc_870>",
|
10137 |
+
"<loc_871>",
|
10138 |
+
"<loc_872>",
|
10139 |
+
"<loc_873>",
|
10140 |
+
"<loc_874>",
|
10141 |
+
"<loc_875>",
|
10142 |
+
"<loc_876>",
|
10143 |
+
"<loc_877>",
|
10144 |
+
"<loc_878>",
|
10145 |
+
"<loc_879>",
|
10146 |
+
"<loc_880>",
|
10147 |
+
"<loc_881>",
|
10148 |
+
"<loc_882>",
|
10149 |
+
"<loc_883>",
|
10150 |
+
"<loc_884>",
|
10151 |
+
"<loc_885>",
|
10152 |
+
"<loc_886>",
|
10153 |
+
"<loc_887>",
|
10154 |
+
"<loc_888>",
|
10155 |
+
"<loc_889>",
|
10156 |
+
"<loc_890>",
|
10157 |
+
"<loc_891>",
|
10158 |
+
"<loc_892>",
|
10159 |
+
"<loc_893>",
|
10160 |
+
"<loc_894>",
|
10161 |
+
"<loc_895>",
|
10162 |
+
"<loc_896>",
|
10163 |
+
"<loc_897>",
|
10164 |
+
"<loc_898>",
|
10165 |
+
"<loc_899>",
|
10166 |
+
"<loc_900>",
|
10167 |
+
"<loc_901>",
|
10168 |
+
"<loc_902>",
|
10169 |
+
"<loc_903>",
|
10170 |
+
"<loc_904>",
|
10171 |
+
"<loc_905>",
|
10172 |
+
"<loc_906>",
|
10173 |
+
"<loc_907>",
|
10174 |
+
"<loc_908>",
|
10175 |
+
"<loc_909>",
|
10176 |
+
"<loc_910>",
|
10177 |
+
"<loc_911>",
|
10178 |
+
"<loc_912>",
|
10179 |
+
"<loc_913>",
|
10180 |
+
"<loc_914>",
|
10181 |
+
"<loc_915>",
|
10182 |
+
"<loc_916>",
|
10183 |
+
"<loc_917>",
|
10184 |
+
"<loc_918>",
|
10185 |
+
"<loc_919>",
|
10186 |
+
"<loc_920>",
|
10187 |
+
"<loc_921>",
|
10188 |
+
"<loc_922>",
|
10189 |
+
"<loc_923>",
|
10190 |
+
"<loc_924>",
|
10191 |
+
"<loc_925>",
|
10192 |
+
"<loc_926>",
|
10193 |
+
"<loc_927>",
|
10194 |
+
"<loc_928>",
|
10195 |
+
"<loc_929>",
|
10196 |
+
"<loc_930>",
|
10197 |
+
"<loc_931>",
|
10198 |
+
"<loc_932>",
|
10199 |
+
"<loc_933>",
|
10200 |
+
"<loc_934>",
|
10201 |
+
"<loc_935>",
|
10202 |
+
"<loc_936>",
|
10203 |
+
"<loc_937>",
|
10204 |
+
"<loc_938>",
|
10205 |
+
"<loc_939>",
|
10206 |
+
"<loc_940>",
|
10207 |
+
"<loc_941>",
|
10208 |
+
"<loc_942>",
|
10209 |
+
"<loc_943>",
|
10210 |
+
"<loc_944>",
|
10211 |
+
"<loc_945>",
|
10212 |
+
"<loc_946>",
|
10213 |
+
"<loc_947>",
|
10214 |
+
"<loc_948>",
|
10215 |
+
"<loc_949>",
|
10216 |
+
"<loc_950>",
|
10217 |
+
"<loc_951>",
|
10218 |
+
"<loc_952>",
|
10219 |
+
"<loc_953>",
|
10220 |
+
"<loc_954>",
|
10221 |
+
"<loc_955>",
|
10222 |
+
"<loc_956>",
|
10223 |
+
"<loc_957>",
|
10224 |
+
"<loc_958>",
|
10225 |
+
"<loc_959>",
|
10226 |
+
"<loc_960>",
|
10227 |
+
"<loc_961>",
|
10228 |
+
"<loc_962>",
|
10229 |
+
"<loc_963>",
|
10230 |
+
"<loc_964>",
|
10231 |
+
"<loc_965>",
|
10232 |
+
"<loc_966>",
|
10233 |
+
"<loc_967>",
|
10234 |
+
"<loc_968>",
|
10235 |
+
"<loc_969>",
|
10236 |
+
"<loc_970>",
|
10237 |
+
"<loc_971>",
|
10238 |
+
"<loc_972>",
|
10239 |
+
"<loc_973>",
|
10240 |
+
"<loc_974>",
|
10241 |
+
"<loc_975>",
|
10242 |
+
"<loc_976>",
|
10243 |
+
"<loc_977>",
|
10244 |
+
"<loc_978>",
|
10245 |
+
"<loc_979>",
|
10246 |
+
"<loc_980>",
|
10247 |
+
"<loc_981>",
|
10248 |
+
"<loc_982>",
|
10249 |
+
"<loc_983>",
|
10250 |
+
"<loc_984>",
|
10251 |
+
"<loc_985>",
|
10252 |
+
"<loc_986>",
|
10253 |
+
"<loc_987>",
|
10254 |
+
"<loc_988>",
|
10255 |
+
"<loc_989>",
|
10256 |
+
"<loc_990>",
|
10257 |
+
"<loc_991>",
|
10258 |
+
"<loc_992>",
|
10259 |
+
"<loc_993>",
|
10260 |
+
"<loc_994>",
|
10261 |
+
"<loc_995>",
|
10262 |
+
"<loc_996>",
|
10263 |
+
"<loc_997>",
|
10264 |
+
"<loc_998>",
|
10265 |
+
"<loc_999>",
|
10266 |
+
"<cap>",
|
10267 |
+
"</cap>",
|
10268 |
+
"<ncap>",
|
10269 |
+
"</ncap>",
|
10270 |
+
"<dcap>",
|
10271 |
+
"</dcap>",
|
10272 |
+
"<grounding>",
|
10273 |
+
"</grounding>",
|
10274 |
+
"<seg>",
|
10275 |
+
"</seg>",
|
10276 |
+
"<sep>",
|
10277 |
+
"<region_cap>",
|
10278 |
+
"</region_cap>",
|
10279 |
+
"<region_to_desciption>",
|
10280 |
+
"</region_to_desciption>",
|
10281 |
+
"<proposal>",
|
10282 |
+
"</proposal>",
|
10283 |
+
"<poly>",
|
10284 |
+
"</poly>",
|
10285 |
"<and>"
|
10286 |
],
|
10287 |
+
"auto_map": {
|
10288 |
+
"AutoProcessor": "processing_florence2.Florence2Processor"
|
10289 |
+
},
|
10290 |
"bos_token": "<s>",
|
10291 |
"clean_up_tokenization_spaces": true,
|
10292 |
"cls_token": "<s>",
|
10293 |
"eos_token": "</s>",
|
10294 |
"errors": "replace",
|
10295 |
"mask_token": "<mask>",
|
10296 |
+
"max_length": null,
|
10297 |
"model_max_length": 1024,
|
10298 |
+
"pad_to_multiple_of": null,
|
10299 |
"pad_token": "<pad>",
|
10300 |
+
"pad_token_type_id": 0,
|
10301 |
+
"padding_side": "right",
|
10302 |
"processor_class": "Florence2Processor",
|
10303 |
"sep_token": "</s>",
|
10304 |
"tokenizer_class": "BartTokenizer",
|