|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" RWKV configuration""" |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
RWKV5_PRETRAINED_CONFIG_ARCHIVE_MAP = {} |
|
|
|
|
|
class Rwkv5Config(PretrainedConfig): |
|
""" |
|
This is the configuration class to store the configuration of a [`Rwkv5Model`]. It is used to instantiate a RWKV5 |
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the |
|
defaults will yield a similar configuration to that of the RWVK-4 |
|
[RWKV/rwkv-5-world-1b5](https://huggingface.co./RWKV/rwkv-5-world-1b5) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 65536): |
|
Vocabulary size of the RWKV5 model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`Rwkv5Model`]. |
|
hidden_size (`int`, *optional*, defaults to 768): |
|
Dimensionality of the embeddings and hidden states. |
|
num_hidden_layers (`int`, *optional*, defaults to 24): |
|
Number of hidden layers in the model. |
|
attention_hidden_size (`int`, *optional*): |
|
Dimensionality of the attention hidden states. Will default to `hidden_size` if unset. |
|
num_attention_heads (`int`, *optional*, defaults to 64): |
|
The attention heads to use in rwkv5 self_attention module. |
|
head_size (`int`, *optional*, defaults to 64): head_size of rwkv5 self_attention module. |
|
intermediate_size (`int`, *optional*): |
|
Dimensionality of the inner feed-forward layers. Will default to 4 times `hidden_size` if unset. |
|
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05): |
|
The epsilon to use in the layer normalization layers. |
|
bos_token_id (`int`, *optional*, defaults to 0): |
|
The id of the beginning of sentence token in the vocabulary. Defaults to 0. |
|
eos_token_id (`int`, *optional*, defaults to 0): |
|
The id of the end of sentence token in the vocabulary. Defaults to 0. |
|
rescale_every (`int`, *optional*, defaults to 6): |
|
At inference, the hidden states (and weights of the correponding output layers) are divided by 2 every |
|
`rescale_every` layer. If set to 0 or a negative number, no rescale is done. |
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`): |
|
Whether or not to tie the word embeddings with the input token embeddings. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last state. |
|
|
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import Rwkv5Config, Rwkv5Model |
|
|
|
>>> # Initializing a Rwkv5 configuration |
|
>>> configuration = Rwkv5Config() |
|
|
|
>>> # Initializing a model (with random weights) from the configuration |
|
>>> model = Rwkv5Model(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "rwkv5" |
|
|
|
def __init__( |
|
self, |
|
vocab_size=65536, |
|
hidden_size=768, |
|
num_hidden_layers=24, |
|
attention_hidden_size=None, |
|
head_size=64, |
|
head_size_divisor=8, |
|
intermediate_size=None, |
|
layer_norm_epsilon=1e-5, |
|
bos_token_id=0, |
|
eos_token_id=0, |
|
rescale_every=6, |
|
tie_word_embeddings=False, |
|
use_cache=True, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.attention_hidden_size = attention_hidden_size if attention_hidden_size is not None else hidden_size |
|
self.head_size = head_size |
|
self.head_size_divisor = head_size_divisor |
|
self.intermediate_size = None |
|
self.layer_norm_epsilon = layer_norm_epsilon |
|
self.rescale_every = rescale_every |
|
self.use_cache = use_cache |
|
|
|
self.bos_token_id = bos_token_id |
|
self.eos_token_id = eos_token_id |
|
|
|
super().__init__( |
|
tie_word_embeddings=tie_word_embeddings, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs |
|
) |
|
|