Upload 3 files
Browse files- hybrid_cache.py +154 -0
- modeling_rwkv_hybrid.py +632 -0
- wkv.py +565 -0
hybrid_cache.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from typing import Any, Dict, Optional, Union
|
3 |
+
from transformers.cache_utils import DynamicCache
|
4 |
+
|
5 |
+
|
6 |
+
class TimeMixState:
|
7 |
+
def __init__(self, shift_state: torch.Tensor, wkv_state: torch.Tensor):
|
8 |
+
self.shift_state = shift_state
|
9 |
+
self.wkv_state = wkv_state
|
10 |
+
|
11 |
+
|
12 |
+
class ChannelMixState:
|
13 |
+
def __init__(self, shift_state: torch.Tensor):
|
14 |
+
self.shift_state = shift_state
|
15 |
+
|
16 |
+
|
17 |
+
class BlockState:
|
18 |
+
def __init__(self, time_mix_state: TimeMixState,
|
19 |
+
channel_mix_state: ChannelMixState):
|
20 |
+
self.time_mix_state = time_mix_state
|
21 |
+
self.channel_mix_state = channel_mix_state
|
22 |
+
|
23 |
+
|
24 |
+
class BlockStateList:
|
25 |
+
def __init__(self, shift_states, wkv_states):
|
26 |
+
self.wkv_states = wkv_states
|
27 |
+
self.shift_states = shift_states
|
28 |
+
|
29 |
+
@staticmethod
|
30 |
+
def create(N, B, C, H, device, dtype):
|
31 |
+
result = BlockStateList.empty(N, B, C, H, device, dtype)
|
32 |
+
result.wkv_states[:] = 0
|
33 |
+
result.wkv_states[:] = 0
|
34 |
+
result.shift_states[:] = 0
|
35 |
+
return result
|
36 |
+
|
37 |
+
@staticmethod
|
38 |
+
def empty(N, B, C, H, device, dtype):
|
39 |
+
wkv_states = torch.empty((N, B, H, C//H, C//H),
|
40 |
+
device=device,
|
41 |
+
dtype=torch.bfloat16)
|
42 |
+
shift_states = torch.empty((N, 2, B, C), device=device, dtype=dtype)
|
43 |
+
return BlockStateList(shift_states, wkv_states)
|
44 |
+
|
45 |
+
def __getitem__(self, layer: int):
|
46 |
+
return BlockState(
|
47 |
+
TimeMixState(self.shift_states[layer, 0], self.wkv_states[layer]),
|
48 |
+
ChannelMixState(self.shift_states[layer, 1]))
|
49 |
+
|
50 |
+
def __setitem__(self, layer: int, state: BlockState):
|
51 |
+
self.shift_states[layer, 0] = state.time_mix_state.shift_state
|
52 |
+
self.wkv_states[layer] = state.time_mix_state.wkv_state
|
53 |
+
self.shift_states[layer, 1] = state.channel_mix_state.shift_state
|
54 |
+
|
55 |
+
|
56 |
+
class HybridCache(DynamicCache):
|
57 |
+
def __init__(self) -> None:
|
58 |
+
super().__init__()
|
59 |
+
self.rwkv_layers = set()
|
60 |
+
|
61 |
+
def __repr__(self) -> str:
|
62 |
+
rwkv_layers = f"HybridCache(rwkv_layers={self.rwkv_layers})"
|
63 |
+
# count the number of key_cache and value_cache
|
64 |
+
key_cache_count = sum(len(cache) for cache in self.key_cache)
|
65 |
+
value_cache_count = sum(len(cache) for cache in self.value_cache)
|
66 |
+
count_info = rwkv_layers + \
|
67 |
+
f", key_cache_count={key_cache_count}, value_cache_count={value_cache_count}"
|
68 |
+
memories = 0
|
69 |
+
seq_length = self.get_seq_length()
|
70 |
+
for cache in self.value_cache:
|
71 |
+
for data in cache:
|
72 |
+
if not isinstance(data, torch.Tensor):
|
73 |
+
memories += data.time_mix_state.wkv_state.numel()
|
74 |
+
else:
|
75 |
+
memories += data.numel()
|
76 |
+
count_info += f", memories={memories / 1024/1024}MB, seq_length={seq_length}"
|
77 |
+
return count_info
|
78 |
+
|
79 |
+
def update(self,
|
80 |
+
key_states: Union[int, torch.Tensor],
|
81 |
+
value_states: Union[torch.Tensor, BlockState],
|
82 |
+
layer_idx: int,
|
83 |
+
cache_kwargs: Optional[Dict[str, Any]] = None):
|
84 |
+
if isinstance(key_states, int) and not isinstance(value_states, torch.Tensor):
|
85 |
+
self.rwkv_layers.add(layer_idx)
|
86 |
+
if layer_idx >= len(self.key_cache):
|
87 |
+
self.key_cache.append([])
|
88 |
+
self.value_cache.append([])
|
89 |
+
|
90 |
+
if len(self.key_cache[layer_idx]) == 0:
|
91 |
+
self.key_cache[layer_idx].append(key_states)
|
92 |
+
self.value_cache[layer_idx].append(value_states)
|
93 |
+
else:
|
94 |
+
self.key_cache[layer_idx][0] = self.key_cache[layer_idx][0]+key_states
|
95 |
+
self.value_cache[layer_idx][0] = value_states
|
96 |
+
|
97 |
+
return key_states, value_states
|
98 |
+
|
99 |
+
return super().update(key_states, value_states, layer_idx, cache_kwargs)
|
100 |
+
|
101 |
+
def get_seq_length(self, layer_idx: Optional[int] = 0):
|
102 |
+
if layer_idx in self.rwkv_layers:
|
103 |
+
return self.key_cache[layer_idx][0]
|
104 |
+
return super().get_seq_length(layer_idx)
|
105 |
+
|
106 |
+
def get_max_length(self):
|
107 |
+
return super().get_max_length()
|
108 |
+
|
109 |
+
def reorder_cache(self, beam_idx):
|
110 |
+
return super().reorder_cache(beam_idx)
|
111 |
+
|
112 |
+
def __getitem__(self, item):
|
113 |
+
if item in self.rwkv_layers:
|
114 |
+
return self.value_cache[item]
|
115 |
+
return super().__getitem__(item)
|
116 |
+
|
117 |
+
def offload_to_cpu(self):
|
118 |
+
for cache in self.value_cache:
|
119 |
+
for data in cache:
|
120 |
+
if isinstance(data, torch.Tensor):
|
121 |
+
data.cpu()
|
122 |
+
else:
|
123 |
+
data.time_mix_state.wkv_state.cpu()
|
124 |
+
data.time_mix_state.shift_state.cpu()
|
125 |
+
|
126 |
+
def offload_to_cuda(self, device: str):
|
127 |
+
for cache in self.value_cache:
|
128 |
+
for data in cache:
|
129 |
+
if isinstance(data, torch.Tensor):
|
130 |
+
data.cuda(device)
|
131 |
+
else:
|
132 |
+
data.time_mix_state.wkv_state.cuda(device)
|
133 |
+
data.time_mix_state.shift_state.cuda(device)
|
134 |
+
|
135 |
+
def offload_to_device(self, device_type: str, device_id: int = 0):
|
136 |
+
for cache in self.value_cache:
|
137 |
+
for data in cache:
|
138 |
+
if isinstance(data, torch.Tensor):
|
139 |
+
method = getattr(data, device_type)
|
140 |
+
if device_type == 'cpu':
|
141 |
+
method()
|
142 |
+
else:
|
143 |
+
method(device_id)
|
144 |
+
else:
|
145 |
+
wkv_state_method = getattr(
|
146 |
+
data.time_mix_state.wkv_state, device_type)
|
147 |
+
shift_state_method = getattr(
|
148 |
+
data.time_mix_state.shift_state, device_type)
|
149 |
+
if device_type == 'cpu':
|
150 |
+
wkv_state_method()
|
151 |
+
shift_state_method()
|
152 |
+
else:
|
153 |
+
wkv_state_method(device_id)
|
154 |
+
shift_state_method(device_id)
|
modeling_rwkv_hybrid.py
ADDED
@@ -0,0 +1,632 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Callable, List, Optional, Tuple, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from transformers.cache_utils import Cache
|
6 |
+
|
7 |
+
from transformers.activations import ACT2FN
|
8 |
+
from transformers.cache_utils import Cache, StaticCache
|
9 |
+
from .hybrid_cache import HybridCache
|
10 |
+
from transformers.generation import GenerationMixin
|
11 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
12 |
+
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
|
13 |
+
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
14 |
+
|
15 |
+
from transformers.modeling_outputs import (
|
16 |
+
BaseModelOutputWithPast,
|
17 |
+
CausalLMOutputWithPast,
|
18 |
+
)
|
19 |
+
from transformers.processing_utils import Unpack
|
20 |
+
from transformers.utils import (
|
21 |
+
LossKwargs,
|
22 |
+
add_start_docstrings,
|
23 |
+
add_start_docstrings_to_model_forward,
|
24 |
+
logging,
|
25 |
+
)
|
26 |
+
|
27 |
+
import threading
|
28 |
+
from .wkv import Rwkv7Attention, Rwkv6Attention
|
29 |
+
from .configuration_rwkv_hybrid import RwkvHybridConfig
|
30 |
+
|
31 |
+
from transformers.models.qwen2.modeling_qwen2 import (Qwen2MLP,
|
32 |
+
Qwen2RMSNorm,
|
33 |
+
Qwen2RotaryEmbedding,
|
34 |
+
Qwen2Attention)
|
35 |
+
|
36 |
+
logger = logging.get_logger(__name__)
|
37 |
+
|
38 |
+
_CONFIG_FOR_DOC = "RwkvHybridConfig"
|
39 |
+
|
40 |
+
class RwkvHybridDecoderLayer(nn.Module):
|
41 |
+
def __init__(self, config: RwkvHybridConfig, layer_idx: int, update_v_first, get_v_first):
|
42 |
+
super().__init__()
|
43 |
+
self.hidden_size = config.hidden_size
|
44 |
+
|
45 |
+
self.is_rwkv = True if layer_idx in config.wkv_layers else False
|
46 |
+
if self.is_rwkv:
|
47 |
+
if config.wkv_version == 7:
|
48 |
+
self.self_attn = Rwkv7Attention(args=config, layer_id=layer_idx,
|
49 |
+
update_v_first=update_v_first,
|
50 |
+
get_v_first=get_v_first)
|
51 |
+
elif config.wkv_version == 6:
|
52 |
+
self.self_attn = Rwkv6Attention(args=config, layer_id=layer_idx,
|
53 |
+
update_v_first=update_v_first,
|
54 |
+
get_v_first=get_v_first)
|
55 |
+
else:
|
56 |
+
raise NotImplementedError
|
57 |
+
elif not self.is_rwkv:
|
58 |
+
self.self_attn = Qwen2Attention(config=config, layer_idx=layer_idx)
|
59 |
+
else:
|
60 |
+
self.self_attn = None
|
61 |
+
raise NotImplementedError
|
62 |
+
|
63 |
+
self.mlp = Qwen2MLP(config)
|
64 |
+
self.input_layernorm = Qwen2RMSNorm(
|
65 |
+
config.hidden_size, eps=config.rms_norm_eps)
|
66 |
+
self.post_attention_layernorm = Qwen2RMSNorm(
|
67 |
+
config.hidden_size, eps=config.rms_norm_eps)
|
68 |
+
|
69 |
+
|
70 |
+
def forward(
|
71 |
+
self,
|
72 |
+
hidden_states: torch.Tensor,
|
73 |
+
attention_mask: Optional[torch.Tensor] = None,
|
74 |
+
position_ids: Optional[torch.LongTensor] = None,
|
75 |
+
past_key_value: Optional[Cache] = None,
|
76 |
+
output_attentions: Optional[bool] = False,
|
77 |
+
use_cache: Optional[bool] = False,
|
78 |
+
cache_position: Optional[torch.LongTensor] = None,
|
79 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
80 |
+
**kwargs,
|
81 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
82 |
+
residual = hidden_states
|
83 |
+
|
84 |
+
hidden_states = self.input_layernorm(hidden_states)
|
85 |
+
|
86 |
+
# RWKV attention
|
87 |
+
hidden_states, self_attn_weights = self.self_attn(
|
88 |
+
hidden_states=hidden_states,
|
89 |
+
attention_mask=attention_mask,
|
90 |
+
position_ids=position_ids,
|
91 |
+
past_key_value=past_key_value,
|
92 |
+
output_attentions=output_attentions,
|
93 |
+
use_cache=use_cache,
|
94 |
+
cache_position=cache_position,
|
95 |
+
position_embeddings=position_embeddings,
|
96 |
+
)
|
97 |
+
hidden_states = residual + hidden_states
|
98 |
+
|
99 |
+
# Fully Connected
|
100 |
+
residual = hidden_states
|
101 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
102 |
+
hidden_states = self.mlp(hidden_states)
|
103 |
+
hidden_states = residual + hidden_states
|
104 |
+
|
105 |
+
outputs = (hidden_states,)
|
106 |
+
if output_attentions:
|
107 |
+
outputs += (self_attn_weights,)
|
108 |
+
|
109 |
+
return outputs
|
110 |
+
|
111 |
+
RWKV_HYBRID_START_DOCSTRING = r"""
|
112 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
113 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
114 |
+
etc.)
|
115 |
+
|
116 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
117 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
118 |
+
and behavior.
|
119 |
+
|
120 |
+
Parameters:
|
121 |
+
config ([`RwkvHybridConfig`]):
|
122 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
123 |
+
load the weights associated with the model, only the configuration. Check out the
|
124 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
125 |
+
"""
|
126 |
+
|
127 |
+
@add_start_docstrings(
|
128 |
+
"The bare RWKV Hybrid Model outputting raw hidden-states without any specific head on top.",
|
129 |
+
RWKV_HYBRID_START_DOCSTRING,
|
130 |
+
)
|
131 |
+
class RwkvHybridPreTrainedModel(PreTrainedModel):
|
132 |
+
config_class = RwkvHybridConfig
|
133 |
+
base_model_prefix = "rwkv_hybrid"
|
134 |
+
supports_gradient_checkpointing = True
|
135 |
+
_no_split_modules = ["RwkvHybridDecoderLayer"]
|
136 |
+
_skip_keys_device_placement = ["past_key_values"]
|
137 |
+
|
138 |
+
def _init_weights(self, module):
|
139 |
+
std = self.config.initializer_range
|
140 |
+
if isinstance(module, nn.Linear):
|
141 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
142 |
+
if module.bias is not None:
|
143 |
+
module.bias.data.zero_()
|
144 |
+
elif isinstance(module, nn.Embedding):
|
145 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
146 |
+
if module.padding_idx is not None:
|
147 |
+
module.weight.data[module.padding_idx].zero_()
|
148 |
+
|
149 |
+
RWKV_HYBRID_INPUTS_DOCSTRING = r"""
|
150 |
+
Args:
|
151 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
152 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
153 |
+
it.
|
154 |
+
|
155 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
156 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
157 |
+
|
158 |
+
[What are input IDs?](../glossary#input-ids)
|
159 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
160 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
161 |
+
|
162 |
+
- 1 for tokens that are **not masked**,
|
163 |
+
- 0 for tokens that are **masked**.
|
164 |
+
|
165 |
+
[What are attention masks?](../glossary#attention-mask)
|
166 |
+
|
167 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
168 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
169 |
+
|
170 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
171 |
+
`past_key_values`).
|
172 |
+
|
173 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
174 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
175 |
+
information on the default strategy.
|
176 |
+
|
177 |
+
- 1 indicates the head is **not masked**,
|
178 |
+
- 0 indicates the head is **masked**.
|
179 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
180 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
181 |
+
config.n_positions - 1]`.
|
182 |
+
|
183 |
+
[What are position IDs?](../glossary#position-ids)
|
184 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
185 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
186 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
187 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
188 |
+
|
189 |
+
Two formats are allowed:
|
190 |
+
- a [`~cache_utils.Cache`] instance, see our
|
191 |
+
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
|
192 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
193 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
194 |
+
cache format.
|
195 |
+
|
196 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
197 |
+
legacy cache format will be returned.
|
198 |
+
|
199 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
200 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
201 |
+
of shape `(batch_size, sequence_length)`.
|
202 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
203 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
204 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
205 |
+
model's internal embedding lookup matrix.
|
206 |
+
use_cache (`bool`, *optional*):
|
207 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
208 |
+
`past_key_values`).
|
209 |
+
output_attentions (`bool`, *optional*):
|
210 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
211 |
+
tensors for more detail.
|
212 |
+
output_hidden_states (`bool`, *optional*):
|
213 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
214 |
+
more detail.
|
215 |
+
return_dict (`bool`, *optional*):
|
216 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
217 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
218 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
219 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
220 |
+
the complete sequence length.
|
221 |
+
"""
|
222 |
+
|
223 |
+
|
224 |
+
@add_start_docstrings(
|
225 |
+
"The bare RWKV Hybrid Model outputting raw hidden-states without any specific head on top.",
|
226 |
+
RWKV_HYBRID_START_DOCSTRING,
|
227 |
+
)
|
228 |
+
class RwkvHybridModel(RwkvHybridPreTrainedModel):
|
229 |
+
"""
|
230 |
+
RWKV and Transformer hybrid decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`RwkvHybridDecoderLayer`]
|
231 |
+
|
232 |
+
Args:
|
233 |
+
config: RwkvHybridConfig
|
234 |
+
"""
|
235 |
+
|
236 |
+
def __init__(self, config: RwkvHybridConfig):
|
237 |
+
super().__init__(config)
|
238 |
+
self.padding_idx = config.pad_token_id
|
239 |
+
self.vocab_size = config.vocab_size
|
240 |
+
|
241 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
242 |
+
self.thread_local = threading.local()
|
243 |
+
self.thread_local.v_first = None
|
244 |
+
self.layers = nn.ModuleList(
|
245 |
+
[RwkvHybridDecoderLayer(config, layer_idx, self.update_v_first, self.get_v_first) for layer_idx in range(config.num_hidden_layers)]
|
246 |
+
)
|
247 |
+
self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
248 |
+
self.rotary_emb = Qwen2RotaryEmbedding(config=config)
|
249 |
+
self.gradient_checkpointing = False
|
250 |
+
|
251 |
+
# Initialize weights and apply final processing
|
252 |
+
self.post_init()
|
253 |
+
|
254 |
+
def post_init(self):
|
255 |
+
"""
|
256 |
+
A method executed at the end of each Transformer model initialization, to execute code that needs the model's
|
257 |
+
modules properly initialized (such as weight initialization).
|
258 |
+
"""
|
259 |
+
self.init_weights()
|
260 |
+
self._backward_compatibility_gradient_checkpointing()
|
261 |
+
# If current model is a base model, attach `base_model_tp_plan` from config
|
262 |
+
if self.base_model is self:
|
263 |
+
self._tp_plan = self.config.base_model_tp_plan
|
264 |
+
from transformers.modeling_utils import _init_weights
|
265 |
+
if _init_weights:
|
266 |
+
for layer in self.layers:
|
267 |
+
layer.self_attn.time_mixer.post_init()
|
268 |
+
|
269 |
+
def update_v_first(self, new_v_first):
|
270 |
+
"""Callback function to update v_first in HybridModel."""
|
271 |
+
self.thread_local.v_first = new_v_first
|
272 |
+
|
273 |
+
def get_v_first(self):
|
274 |
+
return self.thread_local.v_first
|
275 |
+
|
276 |
+
def get_input_embeddings(self):
|
277 |
+
return self.embed_tokens
|
278 |
+
|
279 |
+
def set_input_embeddings(self, value):
|
280 |
+
self.embed_tokens = value
|
281 |
+
|
282 |
+
@add_start_docstrings_to_model_forward(RWKV_HYBRID_INPUTS_DOCSTRING)
|
283 |
+
def forward(
|
284 |
+
self,
|
285 |
+
input_ids: torch.LongTensor = None,
|
286 |
+
attention_mask: Optional[torch.Tensor] = None,
|
287 |
+
position_ids: Optional[torch.LongTensor] = None,
|
288 |
+
past_key_values: Optional[Cache] = None,
|
289 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
290 |
+
use_cache: Optional[bool] = None,
|
291 |
+
output_attentions: Optional[bool] = None,
|
292 |
+
output_hidden_states: Optional[bool] = None,
|
293 |
+
return_dict: Optional[bool] = None,
|
294 |
+
cache_position: Optional[torch.LongTensor] = None,
|
295 |
+
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
|
296 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
297 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
298 |
+
output_hidden_states = (
|
299 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
300 |
+
)
|
301 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
302 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
303 |
+
|
304 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
305 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
306 |
+
|
307 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
308 |
+
logger.warning_once(
|
309 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
310 |
+
)
|
311 |
+
use_cache = False
|
312 |
+
|
313 |
+
if inputs_embeds is None:
|
314 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
315 |
+
|
316 |
+
if use_cache and past_key_values is None:
|
317 |
+
past_key_values = HybridCache()
|
318 |
+
|
319 |
+
if cache_position is None:
|
320 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
321 |
+
cache_position = torch.arange(
|
322 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
323 |
+
)
|
324 |
+
|
325 |
+
if position_ids is None:
|
326 |
+
position_ids = cache_position.unsqueeze(0)
|
327 |
+
|
328 |
+
causal_mask = self._update_causal_mask(
|
329 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
330 |
+
)
|
331 |
+
|
332 |
+
hidden_states = inputs_embeds
|
333 |
+
|
334 |
+
# create position embeddings to be shared across the decoder layers
|
335 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
336 |
+
|
337 |
+
# decoder layers
|
338 |
+
all_hidden_states = () if output_hidden_states else None
|
339 |
+
all_self_attns = () if output_attentions else None
|
340 |
+
|
341 |
+
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
|
342 |
+
if output_hidden_states:
|
343 |
+
all_hidden_states += (hidden_states,)
|
344 |
+
|
345 |
+
if self.gradient_checkpointing and self.training:
|
346 |
+
layer_outputs = self._gradient_checkpointing_func(
|
347 |
+
decoder_layer.__call__,
|
348 |
+
hidden_states,
|
349 |
+
causal_mask,
|
350 |
+
position_ids,
|
351 |
+
past_key_values,
|
352 |
+
output_attentions,
|
353 |
+
use_cache,
|
354 |
+
cache_position,
|
355 |
+
position_embeddings,
|
356 |
+
)
|
357 |
+
else:
|
358 |
+
layer_outputs = decoder_layer(
|
359 |
+
hidden_states,
|
360 |
+
attention_mask=causal_mask,
|
361 |
+
position_ids=position_ids,
|
362 |
+
past_key_value=past_key_values,
|
363 |
+
output_attentions=output_attentions,
|
364 |
+
use_cache=use_cache,
|
365 |
+
cache_position=cache_position,
|
366 |
+
position_embeddings=position_embeddings,
|
367 |
+
**flash_attn_kwargs,
|
368 |
+
)
|
369 |
+
|
370 |
+
hidden_states = layer_outputs[0]
|
371 |
+
|
372 |
+
if output_attentions:
|
373 |
+
all_self_attns += (layer_outputs[1],)
|
374 |
+
|
375 |
+
hidden_states = self.norm(hidden_states)
|
376 |
+
|
377 |
+
# add hidden states from the last decoder layer
|
378 |
+
if output_hidden_states:
|
379 |
+
all_hidden_states += (hidden_states,)
|
380 |
+
|
381 |
+
output = BaseModelOutputWithPast(
|
382 |
+
last_hidden_state=hidden_states,
|
383 |
+
past_key_values=past_key_values if use_cache else None,
|
384 |
+
hidden_states=all_hidden_states,
|
385 |
+
attentions=all_self_attns,
|
386 |
+
)
|
387 |
+
return output if return_dict else output.to_tuple()
|
388 |
+
|
389 |
+
def _update_causal_mask(
|
390 |
+
self,
|
391 |
+
attention_mask: torch.Tensor,
|
392 |
+
input_tensor: torch.Tensor,
|
393 |
+
cache_position: torch.Tensor,
|
394 |
+
past_key_values: Cache,
|
395 |
+
output_attentions: bool,
|
396 |
+
):
|
397 |
+
if self.config._attn_implementation == "flash_attention_2":
|
398 |
+
if attention_mask is not None and (attention_mask == 0.0).any():
|
399 |
+
return attention_mask
|
400 |
+
return None
|
401 |
+
|
402 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
403 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
404 |
+
# to infer the attention mask.
|
405 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
406 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
407 |
+
|
408 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
409 |
+
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
|
410 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
411 |
+
attention_mask,
|
412 |
+
inputs_embeds=input_tensor,
|
413 |
+
past_key_values_length=past_seen_tokens,
|
414 |
+
is_training=self.training,
|
415 |
+
):
|
416 |
+
return None
|
417 |
+
|
418 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
419 |
+
sequence_length = input_tensor.shape[1]
|
420 |
+
if using_static_cache:
|
421 |
+
target_length = past_key_values.get_max_cache_shape()
|
422 |
+
else:
|
423 |
+
target_length = (
|
424 |
+
attention_mask.shape[-1]
|
425 |
+
if isinstance(attention_mask, torch.Tensor)
|
426 |
+
else past_seen_tokens + sequence_length + 1
|
427 |
+
)
|
428 |
+
|
429 |
+
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
430 |
+
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
431 |
+
attention_mask,
|
432 |
+
sequence_length=sequence_length,
|
433 |
+
target_length=target_length,
|
434 |
+
dtype=dtype,
|
435 |
+
device=device,
|
436 |
+
cache_position=cache_position,
|
437 |
+
batch_size=input_tensor.shape[0],
|
438 |
+
)
|
439 |
+
|
440 |
+
if (
|
441 |
+
self.config._attn_implementation == "sdpa"
|
442 |
+
and attention_mask is not None
|
443 |
+
and attention_mask.device.type == "cuda"
|
444 |
+
and not output_attentions
|
445 |
+
):
|
446 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
447 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
448 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
449 |
+
min_dtype = torch.finfo(dtype).min
|
450 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
451 |
+
|
452 |
+
return causal_mask
|
453 |
+
|
454 |
+
@staticmethod
|
455 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
456 |
+
attention_mask: torch.Tensor,
|
457 |
+
sequence_length: int,
|
458 |
+
target_length: int,
|
459 |
+
dtype: torch.dtype,
|
460 |
+
device: torch.device,
|
461 |
+
cache_position: torch.Tensor,
|
462 |
+
batch_size: int,
|
463 |
+
**kwargs,
|
464 |
+
):
|
465 |
+
"""
|
466 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
467 |
+
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
468 |
+
|
469 |
+
Args:
|
470 |
+
attention_mask (`torch.Tensor`):
|
471 |
+
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
|
472 |
+
`(batch_size, 1, query_length, key_value_length)`.
|
473 |
+
sequence_length (`int`):
|
474 |
+
The sequence length being processed.
|
475 |
+
target_length (`int`):
|
476 |
+
The target length: when generating with static cache, the mask should be as long as the static cache,
|
477 |
+
to account for the 0 padding, the part of the cache that is not filled yet.
|
478 |
+
dtype (`torch.dtype`):
|
479 |
+
The dtype to use for the 4D attention mask.
|
480 |
+
device (`torch.device`):
|
481 |
+
The device to plcae the 4D attention mask on.
|
482 |
+
cache_position (`torch.Tensor`):
|
483 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
484 |
+
batch_size (`torch.Tensor`):
|
485 |
+
Batch size.
|
486 |
+
"""
|
487 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
488 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
489 |
+
causal_mask = attention_mask
|
490 |
+
else:
|
491 |
+
min_dtype = torch.finfo(dtype).min
|
492 |
+
causal_mask = torch.full(
|
493 |
+
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
494 |
+
)
|
495 |
+
if sequence_length != 1:
|
496 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
497 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
498 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
499 |
+
if attention_mask is not None:
|
500 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
501 |
+
mask_length = attention_mask.shape[-1]
|
502 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
503 |
+
padding_mask = padding_mask == 0
|
504 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
505 |
+
padding_mask, min_dtype
|
506 |
+
)
|
507 |
+
|
508 |
+
return causal_mask
|
509 |
+
|
510 |
+
|
511 |
+
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
|
512 |
+
|
513 |
+
class RwkvHybridForCausalLM(RwkvHybridPreTrainedModel, GenerationMixin):
|
514 |
+
_tied_weights_keys = ["lm_head.weight"]
|
515 |
+
_tp_plan = {"lm_head": "colwise_rep"}
|
516 |
+
|
517 |
+
def __init__(self, config):
|
518 |
+
super().__init__(config)
|
519 |
+
self.model = RwkvHybridModel(config)
|
520 |
+
self.vocab_size = config.vocab_size
|
521 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
522 |
+
|
523 |
+
# Initialize weights and apply final processing
|
524 |
+
self.post_init()
|
525 |
+
|
526 |
+
def get_input_embeddings(self):
|
527 |
+
return self.model.embed_tokens
|
528 |
+
|
529 |
+
def set_input_embeddings(self, value):
|
530 |
+
self.model.embed_tokens = value
|
531 |
+
|
532 |
+
def get_output_embeddings(self):
|
533 |
+
return self.lm_head
|
534 |
+
|
535 |
+
def set_output_embeddings(self, new_embeddings):
|
536 |
+
self.lm_head = new_embeddings
|
537 |
+
|
538 |
+
def set_decoder(self, decoder):
|
539 |
+
self.model = decoder
|
540 |
+
|
541 |
+
def get_decoder(self):
|
542 |
+
return self.model
|
543 |
+
|
544 |
+
# @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
|
545 |
+
# @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
546 |
+
def forward(
|
547 |
+
self,
|
548 |
+
input_ids: torch.LongTensor = None,
|
549 |
+
attention_mask: Optional[torch.Tensor] = None,
|
550 |
+
position_ids: Optional[torch.LongTensor] = None,
|
551 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
552 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
553 |
+
labels: Optional[torch.LongTensor] = None,
|
554 |
+
use_cache: Optional[bool] = None,
|
555 |
+
output_attentions: Optional[bool] = None,
|
556 |
+
output_hidden_states: Optional[bool] = None,
|
557 |
+
return_dict: Optional[bool] = None,
|
558 |
+
cache_position: Optional[torch.LongTensor] = None,
|
559 |
+
num_logits_to_keep: int = 0,
|
560 |
+
**kwargs: Unpack[KwargsForCausalLM],
|
561 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
562 |
+
r"""
|
563 |
+
Args:
|
564 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
565 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
566 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
567 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
568 |
+
|
569 |
+
num_logits_to_keep (`int`, *optional*):
|
570 |
+
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
|
571 |
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
572 |
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
573 |
+
|
574 |
+
Returns:
|
575 |
+
|
576 |
+
Example:
|
577 |
+
|
578 |
+
```python
|
579 |
+
>>> from transformers import AutoTokenizer, RwkvHybridForCausalLM
|
580 |
+
|
581 |
+
>>> model = Qwen2ForCausalLM.from_pretrained("RWKV-Red-Team/ARWKV-7B-Preview-0.1")
|
582 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("RWKV-Red-Team/ARWKV-7B-Preview-0.1")
|
583 |
+
|
584 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
585 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
586 |
+
|
587 |
+
>>> # Generate
|
588 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
589 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
590 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
591 |
+
```"""
|
592 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
593 |
+
output_hidden_states = (
|
594 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
595 |
+
)
|
596 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
597 |
+
|
598 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
599 |
+
outputs = self.model(
|
600 |
+
input_ids=input_ids,
|
601 |
+
attention_mask=attention_mask,
|
602 |
+
position_ids=position_ids,
|
603 |
+
past_key_values=past_key_values,
|
604 |
+
inputs_embeds=inputs_embeds,
|
605 |
+
use_cache=use_cache,
|
606 |
+
output_attentions=output_attentions,
|
607 |
+
output_hidden_states=output_hidden_states,
|
608 |
+
return_dict=return_dict,
|
609 |
+
cache_position=cache_position,
|
610 |
+
**kwargs,
|
611 |
+
)
|
612 |
+
|
613 |
+
hidden_states = outputs[0]
|
614 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
615 |
+
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
|
616 |
+
|
617 |
+
loss = None
|
618 |
+
if labels is not None:
|
619 |
+
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
|
620 |
+
|
621 |
+
if not return_dict:
|
622 |
+
output = (logits,) + outputs[1:]
|
623 |
+
return (loss,) + output if loss is not None else output
|
624 |
+
|
625 |
+
return CausalLMOutputWithPast(
|
626 |
+
loss=loss,
|
627 |
+
logits=logits,
|
628 |
+
past_key_values=outputs.past_key_values,
|
629 |
+
hidden_states=outputs.hidden_states,
|
630 |
+
attentions=outputs.attentions,
|
631 |
+
)
|
632 |
+
|
wkv.py
ADDED
@@ -0,0 +1,565 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from einops import rearrange
|
3 |
+
|
4 |
+
from .hybrid_cache import TimeMixState, BlockState
|
5 |
+
import math
|
6 |
+
import torch.nn as nn
|
7 |
+
from torch.nn import functional as F
|
8 |
+
from .configuration_rwkv_hybrid import RwkvHybridConfig
|
9 |
+
from typing import TYPE_CHECKING, Optional
|
10 |
+
from transformers.cache_utils import Cache
|
11 |
+
|
12 |
+
try:
|
13 |
+
import triton
|
14 |
+
from rwkvfla.ops.rwkv7 import (
|
15 |
+
fused_recurrent_rwkv7,
|
16 |
+
chunk_rwkv7,
|
17 |
+
native_recurrent_rwkv7,
|
18 |
+
fused_addcmul_rwkv7,
|
19 |
+
) # pylint: disable=C0411
|
20 |
+
from rwkvfla.ops.rwkv6 import (
|
21 |
+
fused_recurrent_rwkv6,
|
22 |
+
chunk_rwkv6,
|
23 |
+
native_recurrent_rwkv6,
|
24 |
+
)
|
25 |
+
except ImportError:
|
26 |
+
from rwkvfla.ops.rwkv7 import native_recurrent_rwkv7 # pylint: disable=C0411
|
27 |
+
from rwkvfla.ops.rwkv6 import native_recurrent_rwkv6
|
28 |
+
from rwkvfla.ops.rwkv7 import torch_addcmul_rwkv7
|
29 |
+
|
30 |
+
fused_recurrent_rwkv7 = native_recurrent_rwkv7
|
31 |
+
chunk_rwkv7 = native_recurrent_rwkv7
|
32 |
+
chunk_rwkv6 = native_recurrent_rwkv6
|
33 |
+
fused_recurrent_rwkv6 = native_recurrent_rwkv6
|
34 |
+
fused_addcmul_rwkv7 = torch_addcmul_rwkv7
|
35 |
+
|
36 |
+
|
37 |
+
class Rwkv_Tmix_x070(nn.Module):
|
38 |
+
def __init__(self, args: RwkvHybridConfig, layer_id, update_v_first, get_v_first):
|
39 |
+
super().__init__()
|
40 |
+
self.args = args
|
41 |
+
self.layer_id = layer_id
|
42 |
+
self.hidden_size = args.hidden_size
|
43 |
+
|
44 |
+
self.update_v_first = update_v_first
|
45 |
+
self.get_v_first = get_v_first
|
46 |
+
|
47 |
+
self.head_size = args.head_size
|
48 |
+
self.n_head = args.num_wkv_heads
|
49 |
+
assert args.hidden_size % self.n_head == 0
|
50 |
+
H = self.n_head
|
51 |
+
N = self.head_size
|
52 |
+
|
53 |
+
self.x_r = nn.Parameter(torch.Tensor(1, 1, args.hidden_size))
|
54 |
+
self.x_w = nn.Parameter(torch.Tensor(1, 1, args.hidden_size))
|
55 |
+
self.x_k = nn.Parameter(torch.Tensor(1, 1, args.hidden_size))
|
56 |
+
self.x_v = nn.Parameter(torch.Tensor(1, 1, args.hidden_size))
|
57 |
+
self.x_a = nn.Parameter(torch.Tensor(1, 1, args.hidden_size))
|
58 |
+
|
59 |
+
D_DECAY_LORA = 64
|
60 |
+
D_AAA_LORA = 64
|
61 |
+
D_MV_LORA = 32
|
62 |
+
D_GATE_LORA = 128
|
63 |
+
|
64 |
+
self.w1 = nn.Parameter(torch.Tensor(args.hidden_size, D_DECAY_LORA))
|
65 |
+
self.w2 = nn.Parameter(torch.Tensor(D_DECAY_LORA, args.hidden_size))
|
66 |
+
self.w0 = nn.Parameter(torch.Tensor(1, 1, args.hidden_size))
|
67 |
+
|
68 |
+
self.a1 = nn.Parameter(torch.Tensor(args.hidden_size, D_AAA_LORA))
|
69 |
+
self.a2 = nn.Parameter(torch.Tensor(D_AAA_LORA, args.hidden_size))
|
70 |
+
self.a0 = nn.Parameter(torch.Tensor(1, 1, args.hidden_size))
|
71 |
+
|
72 |
+
self.v1 = nn.Parameter(torch.Tensor(args.hidden_size, D_MV_LORA))
|
73 |
+
self.v2 = nn.Parameter(torch.Tensor(D_MV_LORA, args.hidden_size))
|
74 |
+
self.v0 = nn.Parameter(torch.Tensor(1, 1, args.hidden_size))
|
75 |
+
|
76 |
+
if self.args.wkv_has_gate:
|
77 |
+
self.x_g = nn.Parameter(torch.Tensor(1, 1, args.hidden_size))
|
78 |
+
self.g1 = nn.Parameter(torch.Tensor(args.hidden_size, D_GATE_LORA))
|
79 |
+
self.g2 = nn.Parameter(torch.Tensor(D_GATE_LORA, args.hidden_size))
|
80 |
+
|
81 |
+
self.k_k = nn.Parameter(torch.Tensor(1, 1, args.hidden_size))
|
82 |
+
self.k_a = nn.Parameter(torch.Tensor(1, 1, args.hidden_size))
|
83 |
+
self.r_k = nn.Parameter(torch.Tensor(H, N))
|
84 |
+
|
85 |
+
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
|
86 |
+
self.receptance = nn.Linear(
|
87 |
+
args.hidden_size, args.hidden_size, bias=False)
|
88 |
+
self.key = nn.Linear(args.hidden_size, args.hidden_size, bias=False)
|
89 |
+
self.value = nn.Linear(args.hidden_size, args.hidden_size, bias=False)
|
90 |
+
self.output = nn.Linear(args.hidden_size, args.hidden_size, bias=False)
|
91 |
+
|
92 |
+
if self.args.wkv_has_group_norm:
|
93 |
+
self.ln_x = nn.GroupNorm(
|
94 |
+
H, args.hidden_size, eps=(1e-5) * (args.head_size_divisor**2)
|
95 |
+
)
|
96 |
+
|
97 |
+
def post_init(self):
|
98 |
+
with torch.no_grad():
|
99 |
+
ratio_0_to_1 = self.layer_id / \
|
100 |
+
(self.args.num_hidden_layers - 1) # 0 to 1
|
101 |
+
ratio_1_to_almost0 = 1.0 - (
|
102 |
+
self.layer_id / self.args.num_hidden_layers
|
103 |
+
) # 1 to ~0
|
104 |
+
|
105 |
+
ddd = torch.ones(1, 1, self.args.hidden_size)
|
106 |
+
for i in range(self.args.hidden_size):
|
107 |
+
ddd[0, 0, i] = i / self.args.hidden_size
|
108 |
+
|
109 |
+
nn.init.constant_(
|
110 |
+
self.x_r, 1.0 - torch.pow(ddd, 0.2 * ratio_1_to_almost0))
|
111 |
+
nn.init.constant_(
|
112 |
+
self.x_w, 1.0 - torch.pow(ddd, 0.9 * ratio_1_to_almost0))
|
113 |
+
nn.init.constant_(
|
114 |
+
self.x_k,
|
115 |
+
1.0 - (torch.pow(ddd, 0.9 * ratio_1_to_almost0) +
|
116 |
+
0.4 * ratio_0_to_1),
|
117 |
+
)
|
118 |
+
nn.init.constant_(
|
119 |
+
self.x_v,
|
120 |
+
1.0 - (torch.pow(ddd, 0.4 * ratio_1_to_almost0) +
|
121 |
+
0.6 * ratio_0_to_1),
|
122 |
+
)
|
123 |
+
nn.init.constant_(
|
124 |
+
self.x_a, 1.0 - torch.pow(ddd, 0.9 * ratio_1_to_almost0))
|
125 |
+
|
126 |
+
|
127 |
+
def ortho_init(x, scale):
|
128 |
+
shape = x.shape
|
129 |
+
original_dtype = x.dtype
|
130 |
+
x_fp32 = x.float()
|
131 |
+
if len(shape) == 2:
|
132 |
+
gain = math.sqrt(shape[0] / shape[1]
|
133 |
+
) if shape[0] > shape[1] else 1
|
134 |
+
nn.init.orthogonal_(x_fp32, gain=gain * scale)
|
135 |
+
elif len(shape) == 3:
|
136 |
+
gain = math.sqrt(shape[1] / shape[2]
|
137 |
+
) if shape[1] > shape[2] else 1
|
138 |
+
for i in range(shape[0]):
|
139 |
+
nn.init.orthogonal_(x_fp32[i], gain=gain * scale)
|
140 |
+
else:
|
141 |
+
raise ValueError(
|
142 |
+
"ortho_init only supports 2D or 3D tensors")
|
143 |
+
x.data.copy_(x_fp32.to(original_dtype))
|
144 |
+
return x
|
145 |
+
|
146 |
+
D_DECAY_LORA = 64
|
147 |
+
nn.init.zeros_(self.w1)
|
148 |
+
self.w2 = nn.Parameter(
|
149 |
+
ortho_init(torch.zeros(
|
150 |
+
D_DECAY_LORA, self.args.hidden_size), 0.1)
|
151 |
+
)
|
152 |
+
|
153 |
+
decay_speed = torch.ones(self.args.hidden_size)
|
154 |
+
for n in range(self.args.hidden_size):
|
155 |
+
decay_speed[n] = -7 + 5 * (n / (self.args.hidden_size - 1)) ** (
|
156 |
+
0.85 + 1.0 * ratio_0_to_1**0.5
|
157 |
+
)
|
158 |
+
nn.init.constant_(
|
159 |
+
self.w0, decay_speed.reshape(1, 1, self.args.hidden_size) + 0.5
|
160 |
+
)
|
161 |
+
|
162 |
+
D_AAA_LORA = 64
|
163 |
+
nn.init.zeros_(self.a1)
|
164 |
+
self.a2 = nn.Parameter(
|
165 |
+
ortho_init(torch.zeros(D_AAA_LORA, self.args.hidden_size), 0.1)
|
166 |
+
)
|
167 |
+
nn.init.zeros_(self.a0)
|
168 |
+
|
169 |
+
D_MV_LORA = 32
|
170 |
+
nn.init.zeros_(self.v1)
|
171 |
+
self.v2 = nn.Parameter(
|
172 |
+
ortho_init(torch.zeros(D_MV_LORA, self.args.hidden_size), 0.1)
|
173 |
+
)
|
174 |
+
nn.init.constant_(self.v0, 1.0)
|
175 |
+
|
176 |
+
D_GATE_LORA = 128
|
177 |
+
if self.args.wkv_has_gate:
|
178 |
+
nn.init.zeros_(self.g1)
|
179 |
+
self.g2 = nn.Parameter(
|
180 |
+
ortho_init(torch.zeros(
|
181 |
+
D_GATE_LORA, self.args.hidden_size), 0.1)
|
182 |
+
)
|
183 |
+
nn.init.constant_(
|
184 |
+
self.x_g, 1.0 - torch.pow(ddd, 0.2 * ratio_1_to_almost0))
|
185 |
+
|
186 |
+
nn.init.constant_(self.k_k, 0.85)
|
187 |
+
nn.init.constant_(self.k_a, 1.0)
|
188 |
+
nn.init.zeros_(self.r_k)
|
189 |
+
|
190 |
+
nn.init.zeros_(self.receptance.weight)
|
191 |
+
nn.init.zeros_(self.key.weight)
|
192 |
+
nn.init.zeros_(self.value.weight)
|
193 |
+
nn.init.zeros_(self.output.weight)
|
194 |
+
|
195 |
+
if self.args.wkv_has_group_norm:
|
196 |
+
nn.init.ones_(self.ln_x.weight)
|
197 |
+
nn.init.zeros_(self.ln_x.bias)
|
198 |
+
|
199 |
+
def apply_wkv7_state(self, r, k, v, w, a, b, s,
|
200 |
+
output_final_state,
|
201 |
+
cu_seqlens,
|
202 |
+
head_first
|
203 |
+
):
|
204 |
+
|
205 |
+
if r.device.type == "cpu":
|
206 |
+
r, w, k, v, a, b = map(lambda x: rearrange(x, 'b l (h d) -> b h l d', h=self.n_head), (r, w, k, v, a, b))
|
207 |
+
o, state = native_recurrent_rwkv7(
|
208 |
+
r=r, k=k, v=v, w=w,
|
209 |
+
a=a, b=b,
|
210 |
+
scale=1.0,
|
211 |
+
initial_state=s.transpose(-1, -2),
|
212 |
+
output_final_state=True,
|
213 |
+
head_first=True,
|
214 |
+
)
|
215 |
+
state = state.transpose(-1, -2)
|
216 |
+
x = rearrange(o, "b h l d -> b l (h d)")
|
217 |
+
else:
|
218 |
+
r, w, k, v, a, b = map(lambda x: rearrange(x, 'b l (h d) -> b l h d', h=self.n_head), (r, w, k, v, a, b))
|
219 |
+
wkv7_func = chunk_rwkv7 if self.training else fused_recurrent_rwkv7
|
220 |
+
o, state = wkv7_func(
|
221 |
+
r=r, k=k, v=v, w=w,
|
222 |
+
a=a, b=b,
|
223 |
+
scale=1.0,
|
224 |
+
initial_state=s,
|
225 |
+
output_final_state=output_final_state,
|
226 |
+
cu_seqlens=cu_seqlens,
|
227 |
+
head_first=head_first,
|
228 |
+
)
|
229 |
+
x = rearrange(o, "b l h d -> b l (h d)")
|
230 |
+
return x, state
|
231 |
+
|
232 |
+
def forward(
|
233 |
+
self,
|
234 |
+
hidden_states,
|
235 |
+
last_state: TimeMixState,
|
236 |
+
sequence_mask: Optional[torch.Tensor] = None,
|
237 |
+
use_cache: Optional[bool] = False,
|
238 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
239 |
+
**kwargs
|
240 |
+
):
|
241 |
+
if sequence_mask is not None:
|
242 |
+
hidden_states = hidden_states.mul(
|
243 |
+
sequence_mask[:, -hidden_states.shape[-2]:, None])
|
244 |
+
|
245 |
+
shift_state = last_state.shift_state
|
246 |
+
B, T, C = hidden_states.size()
|
247 |
+
|
248 |
+
if shift_state is not None:
|
249 |
+
xx = torch.concat((shift_state.unsqueeze(
|
250 |
+
1), hidden_states[:, :-1]), dim=1) - hidden_states
|
251 |
+
else:
|
252 |
+
xx = self.time_shift(hidden_states) - hidden_states
|
253 |
+
|
254 |
+
lx = hidden_states[:, -1]
|
255 |
+
|
256 |
+
if self.args.wkv_has_gate:
|
257 |
+
xr, xw, xk, xv, xa, xg = fused_addcmul_rwkv7(
|
258 |
+
hidden_states, xx, self.x_r, self.x_w, self.x_k, self.x_v, self.x_a, self.x_g)
|
259 |
+
else:
|
260 |
+
xr, xw, xk, xv, xa, _ = fused_addcmul_rwkv7(hidden_states, xx, self.x_r, self.x_w, self.x_k, self.x_v, self.x_a)
|
261 |
+
|
262 |
+
r = self.receptance(xr)
|
263 |
+
w = (
|
264 |
+
-F.softplus(-(self.w0 + torch.tanh(xw @ self.w1) @ self.w2)) - 0.5
|
265 |
+
) # soft-clamp to (-inf, -0.5)
|
266 |
+
k = self.key(xk)
|
267 |
+
v = self.value(xv)
|
268 |
+
if self.layer_id == 0:
|
269 |
+
self.update_v_first(v)
|
270 |
+
else:
|
271 |
+
# Original implementation
|
272 |
+
v = v + (self.get_v_first().to(v.device) - v) * torch.sigmoid(
|
273 |
+
self.v0 + (xv @ self.v1) @ self.v2
|
274 |
+
) # add value residual
|
275 |
+
|
276 |
+
a = torch.sigmoid(
|
277 |
+
self.a0 + (xa @ self.a1) @ self.a2
|
278 |
+
) # a is "in-context learning rate"
|
279 |
+
if self.args.wkv_has_gate:
|
280 |
+
g = torch.sigmoid(xg @ self.g1) @ self.g2
|
281 |
+
kk = k * self.k_k
|
282 |
+
kk = F.normalize(kk.view(B, T, self.n_head, -1), dim=-1, p=2.0).view(B, T, C)
|
283 |
+
k = k * (1 + (a - 1) * self.k_a)
|
284 |
+
|
285 |
+
wkv_state = last_state.wkv_state
|
286 |
+
hidden_states, wkv_state = self.apply_wkv7_state(
|
287 |
+
r,
|
288 |
+
k,
|
289 |
+
v,
|
290 |
+
w,
|
291 |
+
-kk,
|
292 |
+
(kk * a),
|
293 |
+
s=wkv_state,
|
294 |
+
output_final_state=use_cache,
|
295 |
+
cu_seqlens=cu_seqlens,
|
296 |
+
head_first=False
|
297 |
+
)
|
298 |
+
if self.args.wkv_has_group_norm:
|
299 |
+
hidden_states = self.ln_x(
|
300 |
+
hidden_states.view(B * T, C)).view(B, T, C)
|
301 |
+
hidden_states = hidden_states + (
|
302 |
+
(r.view(B, T, self.n_head, -1) * k.view(B, T, self.n_head, -1) * self.r_k).sum(
|
303 |
+
dim=-1, keepdim=True
|
304 |
+
)
|
305 |
+
* v.view(B, T, self.n_head, -1)
|
306 |
+
).view(B, T, C)
|
307 |
+
hidden_states = self.output(
|
308 |
+
hidden_states * g) if self.args.wkv_has_gate else self.output(hidden_states)
|
309 |
+
return hidden_states, TimeMixState(lx, wkv_state)
|
310 |
+
|
311 |
+
|
312 |
+
class Rwkv7Attention(nn.Module):
|
313 |
+
def __init__(self, args: RwkvHybridConfig, layer_id, update_v_first, get_v_first):
|
314 |
+
super().__init__()
|
315 |
+
self.args = args
|
316 |
+
self.layer_idx = layer_id
|
317 |
+
self.time_mixer = Rwkv_Tmix_x070(
|
318 |
+
args, layer_id, update_v_first, get_v_first)
|
319 |
+
|
320 |
+
def forward(
|
321 |
+
self,
|
322 |
+
hidden_states: torch.Tensor,
|
323 |
+
sequence_mask: Optional[torch.Tensor] = None,
|
324 |
+
past_key_value: Optional[Cache] = None,
|
325 |
+
use_cache: Optional[bool] = False,
|
326 |
+
output_attentions: Optional[bool] = False,
|
327 |
+
**kwargs
|
328 |
+
):
|
329 |
+
if sequence_mask is not None:
|
330 |
+
assert len(sequence_mask.shape) == 2, (
|
331 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
332 |
+
"for padding purposes (0 indicating padding). "
|
333 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
334 |
+
)
|
335 |
+
batch_size, token_length, _ = hidden_states.shape
|
336 |
+
|
337 |
+
if past_key_value is not None and len(past_key_value) > self.layer_idx:
|
338 |
+
last_state = past_key_value[self.layer_idx][0]
|
339 |
+
else:
|
340 |
+
last_state = self.init_state(
|
341 |
+
batch_size, hidden_states.device, hidden_states.dtype
|
342 |
+
)
|
343 |
+
|
344 |
+
attn_output, states = self.time_mixer(hidden_states=hidden_states,
|
345 |
+
last_state=last_state.time_mix_state,
|
346 |
+
sequence_mask=sequence_mask,
|
347 |
+
use_cache=use_cache,
|
348 |
+
**kwargs)
|
349 |
+
last_state.time_mix_state = states
|
350 |
+
|
351 |
+
if past_key_value is not None:
|
352 |
+
past_key_value.update(token_length, last_state, self.layer_idx)
|
353 |
+
|
354 |
+
return attn_output, None
|
355 |
+
|
356 |
+
def init_state(self, batch_size, device, dtype) -> BlockState:
|
357 |
+
wkv_states = torch.zeros(
|
358 |
+
(
|
359 |
+
batch_size,
|
360 |
+
self.args.num_wkv_heads,
|
361 |
+
self.args.head_size,
|
362 |
+
self.args.head_size,
|
363 |
+
),
|
364 |
+
device=device,
|
365 |
+
dtype=torch.float32,
|
366 |
+
)
|
367 |
+
token_shift = torch.zeros(
|
368 |
+
(batch_size, self.args.hidden_size), device=device, dtype=dtype
|
369 |
+
)
|
370 |
+
return BlockState(TimeMixState(token_shift, wkv_states), None)
|
371 |
+
|
372 |
+
|
373 |
+
class Rwkv_Tmix_x060(nn.Module):
|
374 |
+
def __init__(self, args: RwkvHybridConfig, layer_id, **kwargs):
|
375 |
+
super().__init__()
|
376 |
+
self.args = args
|
377 |
+
self.layer_id = layer_id
|
378 |
+
self.hidden_size = args.hidden_size
|
379 |
+
|
380 |
+
self.head_size = args.head_size
|
381 |
+
self.n_head = args.num_wkv_heads
|
382 |
+
assert args.hidden_size % self.n_head == 0
|
383 |
+
H = self.n_head
|
384 |
+
N = self.head_size
|
385 |
+
|
386 |
+
with torch.no_grad():
|
387 |
+
ratio_0_to_1 = layer_id / (args.n_layer - 1) # 0 to 1
|
388 |
+
ratio_1_to_almost0 = 1.0 - (layer_id / args.n_layer) # 1 to ~0
|
389 |
+
ddd = torch.ones(1, 1, args.hidden_size)
|
390 |
+
for i in range(args.hidden_size):
|
391 |
+
ddd[0, 0, i] = i / args.hidden_size
|
392 |
+
|
393 |
+
# fancy time_mix
|
394 |
+
self.time_maa_x = nn.Parameter(
|
395 |
+
1.0 - torch.pow(ddd, ratio_1_to_almost0))
|
396 |
+
self.time_maa_w = nn.Parameter(
|
397 |
+
1.0 - torch.pow(ddd, ratio_1_to_almost0))
|
398 |
+
self.time_maa_k = nn.Parameter(
|
399 |
+
1.0 - torch.pow(ddd, ratio_1_to_almost0))
|
400 |
+
self.time_maa_v = nn.Parameter(
|
401 |
+
1.0 - (torch.pow(ddd, ratio_1_to_almost0) + 0.3 * ratio_0_to_1)
|
402 |
+
)
|
403 |
+
self.time_maa_r = nn.Parameter(
|
404 |
+
1.0 - torch.pow(ddd, 0.5 * ratio_1_to_almost0)
|
405 |
+
)
|
406 |
+
self.time_maa_g = nn.Parameter(
|
407 |
+
1.0 - torch.pow(ddd, 0.5 * ratio_1_to_almost0)
|
408 |
+
)
|
409 |
+
|
410 |
+
D_MIX_LORA = 32 # generate TIME_MIX for w,k,v,r,g
|
411 |
+
if args.hidden_size == 4096:
|
412 |
+
D_MIX_LORA = D_MIX_LORA * 2
|
413 |
+
self.time_maa_w1 = nn.Parameter(
|
414 |
+
torch.zeros(args.hidden_size, D_MIX_LORA * 5)
|
415 |
+
)
|
416 |
+
self.time_maa_w2 = nn.Parameter(
|
417 |
+
torch.zeros(5, D_MIX_LORA,
|
418 |
+
args.hidden_size).uniform_(-0.01, 0.01)
|
419 |
+
)
|
420 |
+
|
421 |
+
# fancy time_decay
|
422 |
+
decay_speed = torch.ones(args.head_size)
|
423 |
+
for n in range(args.head_size):
|
424 |
+
decay_speed[n] = -6 + 5 * (n / (args.head_size - 1)) ** (
|
425 |
+
0.7 + 1.3 * ratio_0_to_1
|
426 |
+
)
|
427 |
+
self.time_decay = nn.Parameter(
|
428 |
+
decay_speed.reshape(1, 1, args.head_size))
|
429 |
+
|
430 |
+
D_DECAY_LORA = 64
|
431 |
+
if args.hidden_size == 4096:
|
432 |
+
D_DECAY_LORA = D_DECAY_LORA * 2
|
433 |
+
self.time_decay_w1 = nn.Parameter(
|
434 |
+
torch.zeros(args.hidden_size, D_DECAY_LORA)
|
435 |
+
)
|
436 |
+
self.time_decay_w2 = nn.Parameter(
|
437 |
+
torch.zeros(D_DECAY_LORA, args.head_size).uniform_(-0.01, 0.01)
|
438 |
+
)
|
439 |
+
|
440 |
+
tmp = torch.zeros(args.head_size)
|
441 |
+
for n in range(args.head_size):
|
442 |
+
zigzag = ((n + 1) % 3 - 1) * 0.1
|
443 |
+
tmp[n] = ratio_0_to_1 * \
|
444 |
+
(1 - (n / (args.head_size - 1))) + zigzag
|
445 |
+
|
446 |
+
self.time_faaaa = nn.Parameter(
|
447 |
+
tmp.reshape(self.n_head, self.head_size))
|
448 |
+
# self.time_state = nn.Parameter(torch.zeros(self.n_head, self.head_size, self.head_size))
|
449 |
+
|
450 |
+
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
|
451 |
+
self.receptance = nn.Linear(
|
452 |
+
args.hidden_size, args.head_size, bias=False)
|
453 |
+
self.key = nn.Linear(args.hidden_size, args.head_size, bias=False)
|
454 |
+
|
455 |
+
self.value = nn.Linear(args.hidden_size, args.head_size, bias=False)
|
456 |
+
self.output = nn.Linear(args.head_size, args.hidden_size, bias=False)
|
457 |
+
self.gate = nn.Linear(args.hidden_size, args.head_size, bias=False)
|
458 |
+
|
459 |
+
if self.args.wkv_has_group_norm:
|
460 |
+
self.ln_x = nn.GroupNorm(
|
461 |
+
self.n_head, args.head_size, eps=(
|
462 |
+
1e-5) * (args.head_size_divisor**2)
|
463 |
+
)
|
464 |
+
|
465 |
+
def post_init(self):
|
466 |
+
pass
|
467 |
+
|
468 |
+
def forward(self, x, last_state: TimeMixState):
|
469 |
+
shift_state = last_state.shift_state
|
470 |
+
B, T, C = x.size()
|
471 |
+
H = self.n_head
|
472 |
+
if shift_state is not None:
|
473 |
+
xx = torch.concat((shift_state.unsqueeze(1), x[:, :-1]), dim=1) - x
|
474 |
+
else:
|
475 |
+
xx = self.time_shift(x) - x
|
476 |
+
lx = x[:, -1]
|
477 |
+
|
478 |
+
xxx = x + xx * self.time_maa_x
|
479 |
+
xxx = torch.tanh(xxx @ self.time_maa_w1).view(B *
|
480 |
+
T, 5, -1).transpose(0, 1)
|
481 |
+
xxx = torch.bmm(xxx, self.time_maa_w2).view(5, B, T, -1)
|
482 |
+
mw, mk, mv, mr, mg = xxx.unbind(dim=0)
|
483 |
+
|
484 |
+
xw = x + xx * (self.time_maa_w + mw)
|
485 |
+
xk = x + xx * (self.time_maa_k + mk)
|
486 |
+
xv = x + xx * (self.time_maa_v + mv)
|
487 |
+
xr = x + xx * (self.time_maa_r + mr)
|
488 |
+
xg = x + xx * (self.time_maa_g + mg)
|
489 |
+
|
490 |
+
r = self.receptance(xr)
|
491 |
+
k = self.key(xk)
|
492 |
+
v = self.value(xv)
|
493 |
+
g = F.silu(self.gate(xg))
|
494 |
+
|
495 |
+
ww = torch.tanh(xw @ self.time_decay_w1) @ self.time_decay_w2
|
496 |
+
w = self.time_decay + ww
|
497 |
+
|
498 |
+
wkv_state = last_state.wkv_state
|
499 |
+
x, wkv_state = self.apply_wkv6_state(
|
500 |
+
B, T, C, H, r, k, v, w, u=self.time_faaaa, s=wkv_state
|
501 |
+
)
|
502 |
+
if self.args.wkv_has_group_norm:
|
503 |
+
x = self.ln_x(x.view(B * T, C)).view(B, T, C)
|
504 |
+
x = self.output(x * g)
|
505 |
+
return x, TimeMixState(lx, wkv_state)
|
506 |
+
|
507 |
+
def apply_wkv6_state(self, B, T, C, H, r, k, v, w, u, s):
|
508 |
+
r, w, k, v = map(lambda x: rearrange(x, 'b l (h d) -> b h l d', h=self.n_head), (r, w, k, v))
|
509 |
+
|
510 |
+
if r.device.type == "cpu":
|
511 |
+
wkv6_func = native_recurrent_rwkv6
|
512 |
+
elif self.training:
|
513 |
+
wkv6_func = chunk_rwkv6
|
514 |
+
else:
|
515 |
+
wkv6_func = fused_recurrent_rwkv6
|
516 |
+
|
517 |
+
o, state = wkv6_func(
|
518 |
+
r,
|
519 |
+
k,
|
520 |
+
v,
|
521 |
+
-torch.exp(w),
|
522 |
+
u=u,
|
523 |
+
scale=1.0,
|
524 |
+
initial_state=s,
|
525 |
+
output_final_state=True,
|
526 |
+
)
|
527 |
+
x = rearrange(o, "b h l d -> b l (h d)")
|
528 |
+
return x, state
|
529 |
+
|
530 |
+
|
531 |
+
class Rwkv6Attention(nn.Module):
|
532 |
+
def __init__(self, args: RwkvHybridConfig, layer_id, **kwargs):
|
533 |
+
super().__init__()
|
534 |
+
self.args = args
|
535 |
+
self.layer_idx = layer_id
|
536 |
+
self.time_mixer = Rwkv_Tmix_x060(args, layer_id, **kwargs)
|
537 |
+
|
538 |
+
def forward(self, hidden_states, past_key_value, **kwargs):
|
539 |
+
attn_output = hidden_states
|
540 |
+
B, T, C = attn_output.size()
|
541 |
+
if past_key_value is not None:
|
542 |
+
if len(past_key_value) <= self.layer_idx:
|
543 |
+
last_state = None
|
544 |
+
else:
|
545 |
+
last_state = past_key_value[self.layer_idx][0]
|
546 |
+
if last_state is None:
|
547 |
+
wkv_states = torch.zeros(
|
548 |
+
(B, self.args.num_wkv_heads,
|
549 |
+
self.args.head_size, self.args.head_size),
|
550 |
+
device=attn_output.device,
|
551 |
+
dtype=torch.float32,
|
552 |
+
)
|
553 |
+
token_shift = torch.zeros(
|
554 |
+
(B, C), device=attn_output.device, dtype=attn_output.dtype
|
555 |
+
)
|
556 |
+
time_state = TimeMixState(token_shift, wkv_states)
|
557 |
+
channel_state = None
|
558 |
+
last_state = BlockState(time_state, channel_state)
|
559 |
+
attn_output, states = self.time_mixer(
|
560 |
+
attn_output, last_state.time_mix_state)
|
561 |
+
last_state.time_mix_state = states
|
562 |
+
|
563 |
+
if past_key_value is not None:
|
564 |
+
past_key_value.update(T, last_state, self.layer_idx)
|
565 |
+
return attn_output, None
|