File size: 1,715 Bytes
221fddf 860de4f 221fddf 860de4f 221fddf 860de4f 221fddf 860de4f 221fddf 860de4f 221fddf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: videomae-base-SOCAL1-finetune
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# videomae-base-SOCAL1-finetune
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co./MCG-NJU/videomae-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7559
- F1: 0.6420
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 138
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.6991 | 0.17 | 23 | 0.7139 | 0.7089 |
| 0.6361 | 1.17 | 46 | 0.7703 | 0.7089 |
| 0.882 | 2.17 | 69 | 0.6996 | 0.1333 |
| 0.657 | 3.17 | 92 | 0.7329 | 0.7089 |
| 0.64 | 4.17 | 115 | 0.7165 | 0.7089 |
| 0.6312 | 5.17 | 138 | 0.6639 | 0.7089 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.14.7
- Tokenizers 0.15.0
|