weqweasdas commited on
Commit
e1d2459
·
verified ·
1 Parent(s): 9a480b2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +62 -1
README.md CHANGED
@@ -1,4 +1,65 @@
1
  ---
2
  {}
3
  ---
4
- mix2 + 30k safety + 15w ultra-interact
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  {}
3
  ---
4
+ This preference model is trained from [LLaMA3-8B-it](meta-llama/Meta-Llama-3-8B-Instruct) with the training script at [Reward Modeling](https://github.com/RLHFlow/RLHF-Reward-Modeling/tree/pm_dev/pair-pm).
5
+
6
+ The dataset is RLHFlow/pair_preference_model_dataset. It achieves Chat-98.6, Char-hard 65.8, Safety 89.6, and reasoning 94.9 in reward bench.
7
+
8
+
9
+ ## Service the RM
10
+
11
+ Here is an example to use the Preference Model to rank a pair. For n>2 responses, it is recommened to use the tournament style ranking strategy to get the best response so that the complexity is linear in n.
12
+
13
+ ```python
14
+ device = 0
15
+
16
+ model = AutoModelForCausalLM.from_pretrained(script_args.preference_name_or_path,
17
+ torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2").cuda()
18
+ tokenizer = AutoTokenizer.from_pretrained(script_args.preference_name_or_path, use_fast=True)
19
+ tokenizer_plain = AutoTokenizer.from_pretrained(script_args.preference_name_or_path, use_fast=True)
20
+ tokenizer_plain.chat_template = "\n{% for message in messages %}{% if loop.index0 % 2 == 0 %}\n\n<turn> user\n {{ message['content'] }}{% else %}\n\n<turn> assistant\n {{ message['content'] }}{% endif %}{% endfor %}\n\n\n"
21
+
22
+ prompt_template = "[CONTEXT] {context} [RESPONSE A] {response_A} [RESPONSE B] {response_B} \n"
23
+ token_id_A = tokenizer.encode("A", add_special_tokens=False)
24
+ token_id_B = tokenizer.encode("B", add_special_tokens=False)
25
+ assert len(token_id_A) == 1 and len(token_id_B) == 1
26
+ token_id_A = token_id_A[0]
27
+ token_id_B = token_id_B[0]
28
+ temperature = 1.0
29
+
30
+
31
+ model.eval()
32
+ prompt = "AAAA"
33
+ response_chosen = "BBBB"
34
+ response_rejected = "CCCC"
35
+
36
+ instruction = [{"role": "user", "content": prompt}]
37
+ context = tokenizer_plain.apply_chat_template(instruction, tokenize=False)
38
+ responses = [response_chosen, response_rejected]
39
+ probs_chosen = []
40
+
41
+ for chosen_position in [0, 1]:
42
+ # we swap order to mitigate position bias
43
+ response_A = responses[chosen_position]
44
+ response_B = responses[1 - chosen_position]
45
+ prompt = prompt_template.format(context=context, response_A=response_A, response_B=response_B)
46
+ message = [
47
+ {"role": "user", "content": prompt},
48
+ ]
49
+
50
+ input_ids = tokenizer.encode(tokenizer.apply_chat_template(message, tokenize=False).replace(tokenizer.bos_token, ""), return_tensors='pt', add_special_tokens=False).cuda()
51
+
52
+ with torch.no_grad():
53
+ output = model(input_ids)
54
+ logit_A = output.logits[0, -1, token_id_A].item()
55
+ logit_B = output.logits[0, -1, token_id_B].item()
56
+ # take softmax to get the probability; using numpy
57
+ Z = np.exp(logit_A / temperature) + np.exp(logit_B / temperature)
58
+ logit_chosen = [logit_A, logit_B][chosen_position]
59
+ prob_chosen = np.exp(logit_chosen / temperature) / Z
60
+ probs_chosen.append(prob_chosen)
61
+
62
+ avg_prob_chosen = np.mean(probs_chosen)
63
+ correct = 0.5 if avg_prob_chosen == 0.5 else float(avg_prob_chosen > 0.5)
64
+ print(correct)
65
+ ```