File size: 6,876 Bytes
f39a6b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a8c806
 
f39a6b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
---
license: llama3
---

# Arbitrary-Rating Multi-Objective Reward Model (ArmoRM) with Mixture-of-Experts (MoE) Aggregation of Reward Objectives



+ **Authors** (* indicates equal contribution)

    [Haoxiang Wang*](https://haoxiang-wang.github.io/), [Wei Xiong*](https://weixiongust.github.io/WeiXiongUST/index.html), [Tengyang Xie](https://tengyangxie.github.io/), [Han Zhao](https://hanzhaoml.github.io/), [Tong Zhang](https://tongzhang-ml.org/)

+ **Blog**: To appear soon (with implementation details)
+ **Tech Report**: To be released in June 2024
+ **Model**: [ArmoRM-Llama3-8B-v0.1](https://huggingface.co./RLHFlow/ArmoRM-Llama3-8B-v0.1)
  + Finetuned from model: [FsfairX-LLaMA3-RM-v0.1](https://huggingface.co./sfairXC/FsfairX-LLaMA3-RM-v0.1)
- **Code Repository:** https://github.com/RLHFlow/RLHF-Reward-Modeling/
+ **Architecture**

    <p align="center">
      <img width="800" alt="image" src="https://github.com/RLHFlow/RLHFlow.github.io/blob/main/assets/ArmoRM-MoE.png?raw=true">
    </p>

## RewardBench LeaderBoard

 | Model  | Base Model                                                             | Method | Score | Chat | Chat Hard | Safety | Reasoning | Prior Sets (0.5 weight) |
|:--------------------------------------------------------------------------------|:-----------------------------------------------------------------------|:-----:|:-----|:----------|:-------|:----------|:-----------------------|:------------------------|
  | ArmoRM-Llama3-8B-v0.1                                                           | Llama-3 8B | ArmoRM + MoE | **88.97** | 96.9     | **76.8**  | **92.2** | **97.3**  | 74.3                    |
  | Cohere May 2024                                                                 | Unknown | Unknown  | 88.25     | 96.4     | 71.3      | **92.7** | **97.7**  | **78.2**                |
  | GPT-4 Turbo (0125 version)                                                      | GPT-4 Turbo | LLM-as-a-Judge | 84.25     | 95.3     | 74.3      | 87.2     | 86.9      | 70.9                    |
  | [FsfairX-LLaMA3-RM-v0.1](https://huggingface.co./sfairXC/FsfairX-LLaMA3-RM-v0.1) | Llama-3 8B | Bradley-Terry | 83.61     | **99.4** | 65.1      | 87.8     | 86.4      | 74.9                    |
  | [Starling-RM-34B](https://huggingface.co./Nexusflow/Starling-RM-34B)             | Yi-34B | Bradley-Terry | 81.44     | 96.9     | 57.2      | 88.2     | 88.5      | 71.4                    |

## Demo Code
```python
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
device = "cuda"
path = "RLHFlow/ArmoRM-Llama3-8B-v0.1"
model = AutoModelForSequenceClassification.from_pretrained(path, device_map=device, 
                               trust_remote_code=True, torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(path, use_fast=True)
# We load a random sample from the validation set of the HelpSteer dataset
prompt = 'What are some synonyms for the word "beautiful"?'
response = "Nicely, Beautifully, Handsome, Stunning, Wonderful, Gorgeous, Pretty, Stunning, Elegant"
messages = [{"role": "user", "content": prompt},
           {"role": "assistant", "content": response}]
input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt").to(device)
with torch.no_grad():
   output = model(input_ids)
   # Multi-objective rewards for the response
   multi_obj_rewards = output.rewards.cpu().float() 
   # The gating layer's output is conditioned on the prompt
   gating_output = output.gating_output.cpu().float()
   # The preference score for the response, aggregated from the 
   # multi-objective rewards with the gating layer
   preference_score = output.score.cpu().float()  
# We apply a transformation matrix to the multi-objective rewards
# before multiplying with the gating layer's output. This mainly aims
# at reducing the verbosity bias of the original reward objectives
obj_transform = model.reward_transform_matrix.data.cpu().float()
# The final coefficients assigned to each reward objective
multi_obj_coeffs = gating_output @ obj_transform.T
# The preference score is the linear combination of the multi-objective rewards with
# the multi-objective coefficients, which can be verified by the following assertion
assert torch.isclose(torch.sum(multi_obj_rewards * multi_obj_coeffs, dim=1), preference_score, atol=1e-3) 
# Find the top-K reward objectives with coefficients of the highest magnitude
K = 3
top_obj_dims = torch.argsort(torch.abs(multi_obj_coeffs), dim=1, descending=True,)[:, :K]
top_obj_coeffs = torch.gather(multi_obj_coeffs, dim=1, index=top_obj_dims)

# The attributes of the 19 reward objectives
attributes = ['helpsteer-helpfulness','helpsteer-correctness','helpsteer-coherence',
   'helpsteer-complexity','helpsteer-verbosity','ultrafeedback-overall_score',
   'ultrafeedback-instruction_following', 'ultrafeedback-truthfulness',
   'ultrafeedback-honesty','ultrafeedback-helpfulness','beavertails-is_safe',
   'prometheus-score','argilla-overall_quality','argilla-judge_lm','code-complexity',
   'code-style','code-explanation','code-instruction-following','code-readability']

example_index = 0
for i in range(K):
   attribute = attributes[top_obj_dims[example_index, i].item()]
   coeff = top_obj_coeffs[example_index, i].item()
   print(f"{attribute}: {round(coeff,5)}")
# code-complexity: 0.19922
# helpsteer-verbosity: -0.10864
# ultrafeedback-instruction_following: 0.07861

# The actual rewards of this example from the HelpSteer dataset
# are [3,3,4,2,2] for the five helpsteer objectives: 
# helpfulness, correctness, coherence, complexity, verbosity
# We can linearly transform our predicted rewards to the 
# original reward space to compare with the ground truth
helpsteer_rewards_pred = multi_obj_rewards[0, :5] * 5 - 0.5
print(helpsteer_rewards_pred)
# [2.78125   2.859375  3.484375  1.3847656 1.296875 ]
```

## Citation

If you find this work useful for your research, please consider citing:
```
@misc{wang2024interpretable,
  title={Interpretable Preferences via Multi-Objective Reward Modeling and Mixture-of-Experts},
  author={Wang, Haoxiang and Xiong, Wei and Xie, Tengyang and Zhao, Han and Zhang, Tong},
  year={2024}
}

@inproceedings{wang2024arithmetic,
      title={Arithmetic Control of LLMs for Diverse User Preferences: Directional Preference Alignment with Multi-Objective Rewards}, 
      author={Haoxiang Wang and Yong Lin and Wei Xiong and Rui Yang and Shizhe Diao and Shuang Qiu and Han Zhao and Tong Zhang},
      year={2024},
      booktitle={ACL},
}
```
The second entry, "[Arithmetic Control of LLMs for Diverse User Preferences: Directional Preference Alignment with Multi-Objective Rewards](https://arxiv.org/abs/2402.18571)", is another recent work of ours that trained a multi-objective reward model and adopted it for LLM alignment, which motivated us to develop the current work.