tomo1810 commited on
Commit
9573c14
·
1 Parent(s): 692d044

Upload PPO Lunar Lander v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -167.81 +/- 47.41
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fabd098dc60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fabd098dcf0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fabd098dd80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fabd098de10>", "_build": "<function ActorCriticPolicy._build at 0x7fabd098dea0>", "forward": "<function ActorCriticPolicy.forward at 0x7fabd098df30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fabd098dfc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fabd098e050>", "_predict": "<function ActorCriticPolicy._predict at 0x7fabd098e0e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fabd098e170>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fabd098e200>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fabd098e290>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fabd0994180>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 212992, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1697291462792159344, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACa5yD1Ip6m60A6qvGvWTjaS4a866x22tQAAgD8AAIA/t1cCv8H22rxQ2yQ97IMLPPMgWb6zBeo9AAAAAAAAAACNlus9THOeP0pG1D72M9a+5IgbPNJNZD0AAAAAAAAAAKakNL7CrYI/fXFovrHHf74Vtiy9tiLlvQAAAAAAAAAA5uCEPZZeKz+Vag0+JuoNv6n27r16rS09AAAAAAAAAAC2zws/sdqZPw0h+j4PgeG+l818Pis5Dz4AAAAAAAAAAIOK/z6rn8I9qE+mPgmDQr/hxoU+qMm9vQAAAAAAAAAA06KDPrMOWD93LDa+RIfkvlXuwjyd1A6+AAAAAAAAAACaqRc+BUGIPzAiaj6EShu/ALqBvfQes70AAAAAAAAAALPMXb2aG7U/IWBBv85KXL0/2dY8CrFlvAAAAAAAAAAAM1UMv4G63z0J4qG9N77PPYFrBj4CffS9AAAAAAAAAAAAI3K+tK5PPzaeo770xei+dZKkvVKDj7sAAAAAAAAAAGaoILzaybs/Rh3PvVjyBD5ZADm7+pb+OwAAAAAAAAAAF7sGv36vmD3ccBK7Y68jvP3KDrwr/U08AACAPwAAgD8mIpg9pREiP27lUD3tFda+0+iRPeP+rLwAAAAAAAAAAGYtobxIiYw5+aI2ul+ADT23RPc45v6ouwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0649599999999999, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEqtDVpblimMAWyUS6GMAXSUR0CFWlBcAzYVdX2UKGgGR8AVg5MlC1JEaAdLpGgIR0CFWoN3np0PdX2UKGgGR8BRk0xyn1nNaAdLjGgIR0CFWtfIjnmrdX2UKGgGR8BRT+4G2TgVaAdLwGgIR0CFWtQ6ZH/cdX2UKGgGR8BaCf1QIldDaAdLuGgIR0CFXxOXVsk6dX2UKGgGR8Aprq5byH2zaAdLa2gIR0CFYDEfkmx/dX2UKGgGR0AoJqptJnQIaAdLomgIR0CFYDH6MzdldX2UKGgGR8A1u/tpmEoOaAdLomgIR0CFYv/hESdwdX2UKGgGR8BER3sHB1s+aAdL1GgIR0CFY9KsdT5wdX2UKGgGR0A+Q6Skj5bhaAdLeWgIR0CFZ6ifxtpFdX2UKGgGR8BEkaOPvKEGaAdLgGgIR0CFZ976YVqOdX2UKGgGR8Bc7dyksSTRaAdLnGgIR0CFaZScbzbwdX2UKGgGR8BQDLQw9JSSaAdLs2gIR0CFajlMAWBSdX2UKGgGR8BV3uTV2A5JaAdLkmgIR0CFannK4hECdX2UKGgGR8BB8tN8E3bVaAdLimgIR0CFbnbJwKjSdX2UKGgGR8A3HoS+QEIPaAdLomgIR0CFctj5KvmpdX2UKGgGR8AwzmLcbiqAaAdLp2gIR0CFc4CFsYVJdX2UKGgGR8AyUgn+hoM8aAdLjmgIR0CFc6SoOx0NdX2UKGgGR0BENheokzGhaAdLjGgIR0CFeUngpBomdX2UKGgGR8ATIroW56MSaAdLjmgIR0CFe8SjgydndX2UKGgGR7/tG+0w8GLUaAdLh2gIR0CFe+vt+kP+dX2UKGgGR8AZPd0q6OHWaAdLoWgIR0CFfAx0MgEEdX2UKGgGR8A6R9ehPCVKaAdLoGgIR0CFfx7di2DydX2UKGgGR8AvUCcwxnFpaAdLmmgIR0CFg8c5Ke05dX2UKGgGR8A4t7tiQT24aAdLkGgIR0CFhw1O0svqdX2UKGgGR8AYnQVsUIszaAdLkWgIR0CFh6P3i704dX2UKGgGR8A4DwnYxtYTaAdN6ANoCEdAhYkMySFGonV9lChoBkfASUcinpB5X2gHS25oCEdAhYpww9JSSHV9lChoBkdALq6DXe3x4WgHS3FoCEdAhYqrdvbXYnV9lChoBkdAHQCNS619fGgHS6doCEdAhbAuVxCIDnV9lChoBkfAPT/dAPd2xWgHS51oCEdAhbO28h9srXV9lChoBkdAPW+hTOxB3WgHTegDaAhHQIW1TAi3XqZ1fZQoaAZHwDkDp/wy6+ZoB0vLaAhHQIW2OeMAFPl1fZQoaAZHQFR7xUedTYNoB03oA2gIR0CFtk2sJY1YdX2UKGgGR8A1sJTl1bJPaAdLp2gIR0CFuhJXhfjTdX2UKGgGR8A0kDCgsbvPaAdLv2gIR0CFug0lZ5iWdX2UKGgGR8BFRWNWEK3NaAdLiGgIR0CFujh1DBuXdX2UKGgGR8Axxdhy8zyjaAdLrWgIR0CFuyFFDv3KdX2UKGgGR0A+D1X/5tWNaAdLcGgIR0CFu4AXl8w6dX2UKGgGR0BHWtmthd+oaAdLrGgIR0CFvDohY/3WdX2UKGgGR8AkHx5s0pEyaAdLrmgIR0CFvcE7nxJ/dX2UKGgGR8BDPLVvuPV/aAdLmmgIR0CFw01aW5YpdX2UKGgGR8BSGxsMy8BdaAdLsGgIR0CFxkTewcHXdX2UKGgGR8BI9bUgB91EaAdLlGgIR0CFx8zQeFL4dX2UKGgGR8A8Gq7iADq4aAdLlGgIR0CFx/xc3VCpdX2UKGgGR0Ajndi2DxsmaAdLzWgIR0CFyU+IuXeFdX2UKGgGR8Ag9Ok+HJtBaAdLnGgIR0CFylDJlrdndX2UKGgGR8A9rM0gr6LwaAdLmGgIR0CFysh/RVp9dX2UKGgGR0BX6CMglnh9aAdN6ANoCEdAhcrwtapxWHV9lChoBkfAK02i1y/9HmgHS6VoCEdAhcrnwgDA8HV9lChoBkdAMV23Sa3I/GgHS4hoCEdAhcsGUW2w3nV9lChoBkdAKZRCx/ustGgHTegDaAhHQIXLhwZOzpp1fZQoaAZHwGGE9pqREF5oB0vcaAhHQIXOGuoxYaJ1fZQoaAZHQD9Xyup0fYBoB0uVaAhHQIXQnxjJ+2F1fZQoaAZHv/VrVOKwY+BoB0tzaAhHQIXSsgSvkil1fZQoaAZHwD0lFH8TBZZoB0uRaAhHQIXSz1schkl1fZQoaAZHQEQfXjENvwVoB0t4aAhHQIXUVkvsZ511fZQoaAZHwDS1PXTVlPJoB0t3aAhHQIXU1NFjNIN1fZQoaAZHQECExD9fkWBoB0uEaAhHQIXVeRq46Op1fZQoaAZHwBQ/RRdhRZVoB0umaAhHQIXWJFiKBNF1fZQoaAZHwEIGzhxYJVtoB0uuaAhHQIXW8M1CPZJ1fZQoaAZHwDzhOymhufpoB0uYaAhHQIXXpEx7AtZ1fZQoaAZHwCkMsasIVudoB0uaaAhHQIXX/xri2lV1fZQoaAZHwDi2fpUxVQ1oB0uEaAhHQIXaTvNNahZ1fZQoaAZHwDuV3Tuv2XdoB0uZaAhHQIXg3w/gR9R1fZQoaAZHwEDpS9/SYw9oB0tcaAhHQIXiF0DEFW51fZQoaAZHQCIay6cy31BoB0uNaAhHQIXinL1VYIV1fZQoaAZHwE3LB5X2dupoB0uxaAhHQIXnyvV3EAJ1fZQoaAZHwDp6DcuanaZoB03oA2gIR0CF6iKsMiKSdX2UKGgGR8BfLeMuOCGvaAdLtWgIR0CF6wg6ltTDdX2UKGgGR8BSo1yJbdJraAdLsGgIR0CF6y48U21ldX2UKGgGR8BRDlFDv3JxaAdLsWgIR0CF7D72tdRjdX2UKGgGR8AhZf9gnc+JaAdLumgIR0CF7kNjLB9DdX2UKGgGR8BTZsA3kxREaAdLuGgIR0CF759uP3i8dX2UKGgGR8A9IYyO7xusaAdLoGgIR0CF76IXTEzgdX2UKGgGR0BI9j4YaYNRaAdLcGgIR0CF8WSJ0nw5dX2UKGgGR8BRkM7ZFocraAdLjGgIR0CF88C/47A+dX2UKGgGR0BQK9+TeO4oaAdN6ANoCEdAhfW5hjOLSHV9lChoBkfATaYraufVZ2gHS59oCEdAhfeW4uscQ3V9lChoBke/2BKUVzp5eWgHS4BoCEdAhfn82R7qp3V9lChoBkdAFRRjjJdSl2gHS4doCEdAhfuzT4L1EnV9lChoBkfAPby3LFGXomgHS2poCEdAhfwpZfUnX3V9lChoBkdAQExd0JWvKWgHS6toCEdAhf030XgtOHV9lChoBkdAGTRQJokAxWgHS5VoCEdAhgAfIsAeaXV9lChoBkfAT7jleWv8qGgHS6xoCEdAhgEh6a9bo3V9lChoBkfARrWPo3aSLmgHS31oCEdAhgIKR+z+m3V9lChoBkfAT31hRZU1h2gHS9doCEdAhgPjHwPRRnV9lChoBkdANRFcIJJGv2gHTegDaAhHQIYEEF4cFQl1fZQoaAZHwGFDJuVHFxZoB0vVaAhHQIYHbSThYNl1fZQoaAZHwEtc8jAzpHJoB0uVaAhHQIYJVVLi++N1fZQoaAZHQCh8+5e7cwhoB0umaAhHQIYLF4X40uV1fZQoaAZHwFrzBa9sabZoB0vnaAhHQIYLsQoTfzl1fZQoaAZHQCa9oakyk9FoB0t/aAhHQIYMNrTH80l1fZQoaAZHwEGoDM/yGztoB0uSaAhHQIYMMZUDMeR1fZQoaAZHwGfBj7ZWaMJoB00gAWgIR0CGDIGUOd5IdX2UKGgGR0A/vTZQHiWFaAdLnGgIR0CGDdA/LTx5dX2UKGgGR0BAROEM9bHIaAdLyWgIR0CGD0rxRVIadX2UKGgGR8AwlYnv2GqQaAdLgWgIR0CGEvpt78ekdX2UKGgGR8BNEaQFLWZraAdLvGgIR0CGFDSFXaJzdX2UKGgGR8BVQYoiLVFyaAdLwWgIR0CGFH0r9VFQdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 52, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b94b32ea7c610ded54cadee30b5f1bd30d56a147802bbfe245e551b6648376c
3
+ size 146630
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fabd098dc60>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fabd098dcf0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fabd098dd80>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fabd098de10>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fabd098dea0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fabd098df30>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fabd098dfc0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fabd098e050>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fabd098e0e0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fabd098e170>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fabd098e200>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fabd098e290>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fabd0994180>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 212992,
25
+ "_total_timesteps": 200000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1697291462792159344,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACa5yD1Ip6m60A6qvGvWTjaS4a866x22tQAAgD8AAIA/t1cCv8H22rxQ2yQ97IMLPPMgWb6zBeo9AAAAAAAAAACNlus9THOeP0pG1D72M9a+5IgbPNJNZD0AAAAAAAAAAKakNL7CrYI/fXFovrHHf74Vtiy9tiLlvQAAAAAAAAAA5uCEPZZeKz+Vag0+JuoNv6n27r16rS09AAAAAAAAAAC2zws/sdqZPw0h+j4PgeG+l818Pis5Dz4AAAAAAAAAAIOK/z6rn8I9qE+mPgmDQr/hxoU+qMm9vQAAAAAAAAAA06KDPrMOWD93LDa+RIfkvlXuwjyd1A6+AAAAAAAAAACaqRc+BUGIPzAiaj6EShu/ALqBvfQes70AAAAAAAAAALPMXb2aG7U/IWBBv85KXL0/2dY8CrFlvAAAAAAAAAAAM1UMv4G63z0J4qG9N77PPYFrBj4CffS9AAAAAAAAAAAAI3K+tK5PPzaeo770xei+dZKkvVKDj7sAAAAAAAAAAGaoILzaybs/Rh3PvVjyBD5ZADm7+pb+OwAAAAAAAAAAF7sGv36vmD3ccBK7Y68jvP3KDrwr/U08AACAPwAAgD8mIpg9pREiP27lUD3tFda+0+iRPeP+rLwAAAAAAAAAAGYtobxIiYw5+aI2ul+ADT23RPc45v6ouwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.0649599999999999,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV6QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEqtDVpblimMAWyUS6GMAXSUR0CFWlBcAzYVdX2UKGgGR8AVg5MlC1JEaAdLpGgIR0CFWoN3np0PdX2UKGgGR8BRk0xyn1nNaAdLjGgIR0CFWtfIjnmrdX2UKGgGR8BRT+4G2TgVaAdLwGgIR0CFWtQ6ZH/cdX2UKGgGR8BaCf1QIldDaAdLuGgIR0CFXxOXVsk6dX2UKGgGR8Aprq5byH2zaAdLa2gIR0CFYDEfkmx/dX2UKGgGR0AoJqptJnQIaAdLomgIR0CFYDH6MzdldX2UKGgGR8A1u/tpmEoOaAdLomgIR0CFYv/hESdwdX2UKGgGR8BER3sHB1s+aAdL1GgIR0CFY9KsdT5wdX2UKGgGR0A+Q6Skj5bhaAdLeWgIR0CFZ6ifxtpFdX2UKGgGR8BEkaOPvKEGaAdLgGgIR0CFZ976YVqOdX2UKGgGR8Bc7dyksSTRaAdLnGgIR0CFaZScbzbwdX2UKGgGR8BQDLQw9JSSaAdLs2gIR0CFajlMAWBSdX2UKGgGR8BV3uTV2A5JaAdLkmgIR0CFannK4hECdX2UKGgGR8BB8tN8E3bVaAdLimgIR0CFbnbJwKjSdX2UKGgGR8A3HoS+QEIPaAdLomgIR0CFctj5KvmpdX2UKGgGR8AwzmLcbiqAaAdLp2gIR0CFc4CFsYVJdX2UKGgGR8AyUgn+hoM8aAdLjmgIR0CFc6SoOx0NdX2UKGgGR0BENheokzGhaAdLjGgIR0CFeUngpBomdX2UKGgGR8ATIroW56MSaAdLjmgIR0CFe8SjgydndX2UKGgGR7/tG+0w8GLUaAdLh2gIR0CFe+vt+kP+dX2UKGgGR8AZPd0q6OHWaAdLoWgIR0CFfAx0MgEEdX2UKGgGR8A6R9ehPCVKaAdLoGgIR0CFfx7di2DydX2UKGgGR8AvUCcwxnFpaAdLmmgIR0CFg8c5Ke05dX2UKGgGR8A4t7tiQT24aAdLkGgIR0CFhw1O0svqdX2UKGgGR8AYnQVsUIszaAdLkWgIR0CFh6P3i704dX2UKGgGR8A4DwnYxtYTaAdN6ANoCEdAhYkMySFGonV9lChoBkfASUcinpB5X2gHS25oCEdAhYpww9JSSHV9lChoBkdALq6DXe3x4WgHS3FoCEdAhYqrdvbXYnV9lChoBkdAHQCNS619fGgHS6doCEdAhbAuVxCIDnV9lChoBkfAPT/dAPd2xWgHS51oCEdAhbO28h9srXV9lChoBkdAPW+hTOxB3WgHTegDaAhHQIW1TAi3XqZ1fZQoaAZHwDkDp/wy6+ZoB0vLaAhHQIW2OeMAFPl1fZQoaAZHQFR7xUedTYNoB03oA2gIR0CFtk2sJY1YdX2UKGgGR8A1sJTl1bJPaAdLp2gIR0CFuhJXhfjTdX2UKGgGR8A0kDCgsbvPaAdLv2gIR0CFug0lZ5iWdX2UKGgGR8BFRWNWEK3NaAdLiGgIR0CFujh1DBuXdX2UKGgGR8Axxdhy8zyjaAdLrWgIR0CFuyFFDv3KdX2UKGgGR0A+D1X/5tWNaAdLcGgIR0CFu4AXl8w6dX2UKGgGR0BHWtmthd+oaAdLrGgIR0CFvDohY/3WdX2UKGgGR8AkHx5s0pEyaAdLrmgIR0CFvcE7nxJ/dX2UKGgGR8BDPLVvuPV/aAdLmmgIR0CFw01aW5YpdX2UKGgGR8BSGxsMy8BdaAdLsGgIR0CFxkTewcHXdX2UKGgGR8BI9bUgB91EaAdLlGgIR0CFx8zQeFL4dX2UKGgGR8A8Gq7iADq4aAdLlGgIR0CFx/xc3VCpdX2UKGgGR0Ajndi2DxsmaAdLzWgIR0CFyU+IuXeFdX2UKGgGR8Ag9Ok+HJtBaAdLnGgIR0CFylDJlrdndX2UKGgGR8A9rM0gr6LwaAdLmGgIR0CFysh/RVp9dX2UKGgGR0BX6CMglnh9aAdN6ANoCEdAhcrwtapxWHV9lChoBkfAK02i1y/9HmgHS6VoCEdAhcrnwgDA8HV9lChoBkdAMV23Sa3I/GgHS4hoCEdAhcsGUW2w3nV9lChoBkdAKZRCx/ustGgHTegDaAhHQIXLhwZOzpp1fZQoaAZHwGGE9pqREF5oB0vcaAhHQIXOGuoxYaJ1fZQoaAZHQD9Xyup0fYBoB0uVaAhHQIXQnxjJ+2F1fZQoaAZHv/VrVOKwY+BoB0tzaAhHQIXSsgSvkil1fZQoaAZHwD0lFH8TBZZoB0uRaAhHQIXSz1schkl1fZQoaAZHQEQfXjENvwVoB0t4aAhHQIXUVkvsZ511fZQoaAZHwDS1PXTVlPJoB0t3aAhHQIXU1NFjNIN1fZQoaAZHQECExD9fkWBoB0uEaAhHQIXVeRq46Op1fZQoaAZHwBQ/RRdhRZVoB0umaAhHQIXWJFiKBNF1fZQoaAZHwEIGzhxYJVtoB0uuaAhHQIXW8M1CPZJ1fZQoaAZHwDzhOymhufpoB0uYaAhHQIXXpEx7AtZ1fZQoaAZHwCkMsasIVudoB0uaaAhHQIXX/xri2lV1fZQoaAZHwDi2fpUxVQ1oB0uEaAhHQIXaTvNNahZ1fZQoaAZHwDuV3Tuv2XdoB0uZaAhHQIXg3w/gR9R1fZQoaAZHwEDpS9/SYw9oB0tcaAhHQIXiF0DEFW51fZQoaAZHQCIay6cy31BoB0uNaAhHQIXinL1VYIV1fZQoaAZHwE3LB5X2dupoB0uxaAhHQIXnyvV3EAJ1fZQoaAZHwDp6DcuanaZoB03oA2gIR0CF6iKsMiKSdX2UKGgGR8BfLeMuOCGvaAdLtWgIR0CF6wg6ltTDdX2UKGgGR8BSo1yJbdJraAdLsGgIR0CF6y48U21ldX2UKGgGR8BRDlFDv3JxaAdLsWgIR0CF7D72tdRjdX2UKGgGR8AhZf9gnc+JaAdLumgIR0CF7kNjLB9DdX2UKGgGR8BTZsA3kxREaAdLuGgIR0CF759uP3i8dX2UKGgGR8A9IYyO7xusaAdLoGgIR0CF76IXTEzgdX2UKGgGR0BI9j4YaYNRaAdLcGgIR0CF8WSJ0nw5dX2UKGgGR8BRkM7ZFocraAdLjGgIR0CF88C/47A+dX2UKGgGR0BQK9+TeO4oaAdN6ANoCEdAhfW5hjOLSHV9lChoBkfATaYraufVZ2gHS59oCEdAhfeW4uscQ3V9lChoBke/2BKUVzp5eWgHS4BoCEdAhfn82R7qp3V9lChoBkdAFRRjjJdSl2gHS4doCEdAhfuzT4L1EnV9lChoBkfAPby3LFGXomgHS2poCEdAhfwpZfUnX3V9lChoBkdAQExd0JWvKWgHS6toCEdAhf030XgtOHV9lChoBkdAGTRQJokAxWgHS5VoCEdAhgAfIsAeaXV9lChoBkfAT7jleWv8qGgHS6xoCEdAhgEh6a9bo3V9lChoBkfARrWPo3aSLmgHS31oCEdAhgIKR+z+m3V9lChoBkfAT31hRZU1h2gHS9doCEdAhgPjHwPRRnV9lChoBkdANRFcIJJGv2gHTegDaAhHQIYEEF4cFQl1fZQoaAZHwGFDJuVHFxZoB0vVaAhHQIYHbSThYNl1fZQoaAZHwEtc8jAzpHJoB0uVaAhHQIYJVVLi++N1fZQoaAZHQCh8+5e7cwhoB0umaAhHQIYLF4X40uV1fZQoaAZHwFrzBa9sabZoB0vnaAhHQIYLsQoTfzl1fZQoaAZHQCa9oakyk9FoB0t/aAhHQIYMNrTH80l1fZQoaAZHwEGoDM/yGztoB0uSaAhHQIYMMZUDMeR1fZQoaAZHwGfBj7ZWaMJoB00gAWgIR0CGDIGUOd5IdX2UKGgGR0A/vTZQHiWFaAdLnGgIR0CGDdA/LTx5dX2UKGgGR0BAROEM9bHIaAdLyWgIR0CGD0rxRVIadX2UKGgGR8AwlYnv2GqQaAdLgWgIR0CGEvpt78ekdX2UKGgGR8BNEaQFLWZraAdLvGgIR0CGFDSFXaJzdX2UKGgGR8BVQYoiLVFyaAdLwWgIR0CGFH0r9VFQdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 52,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57deadc49a48b3ee3b8f51644ee49e163918e71c943342f285d9e202e04fc03d
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:583051560f921d5eccc5261d73bd3da07bb17545877b564a57f5435c613638e0
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (206 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -167.81317180000002, "std_reward": 47.41371171457939, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-14T14:22:03.937943"}