Update README.md
Browse files
README.md
CHANGED
@@ -55,4 +55,40 @@ llava-Qwen2-7B-Instruct-Chinese-CLIP = Qwen/Qwen2-7B-Instruct + multi_modal_proj
|
|
55 |
<img src="./images/llava-qwen-2-7b-OFA-Syschinese-clip-chineseOCR_pri_fly_SWH_memechinese_lora_0716_warmup0_1_fp16/7.PNG" width="800" height="400">
|
56 |
<img src="./images/llava-qwen-2-7b-OFA-Syschinese-clip-chineseOCR_pri_fly_SWH_memechinese_lora_0716_warmup0_1_fp16/8.PNG" width="800" height="400">
|
57 |
<img src="./images/llava-qwen-2-7b-OFA-Syschinese-clip-chineseOCR_pri_fly_SWH_memechinese_lora_0716_warmup0_1_fp16/9.PNG" width="800" height="400">
|
58 |
-
</br>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
<img src="./images/llava-qwen-2-7b-OFA-Syschinese-clip-chineseOCR_pri_fly_SWH_memechinese_lora_0716_warmup0_1_fp16/7.PNG" width="800" height="400">
|
56 |
<img src="./images/llava-qwen-2-7b-OFA-Syschinese-clip-chineseOCR_pri_fly_SWH_memechinese_lora_0716_warmup0_1_fp16/8.PNG" width="800" height="400">
|
57 |
<img src="./images/llava-qwen-2-7b-OFA-Syschinese-clip-chineseOCR_pri_fly_SWH_memechinese_lora_0716_warmup0_1_fp16/9.PNG" width="800" height="400">
|
58 |
+
</br>
|
59 |
+
|
60 |
+
|
61 |
+
7. 代码</br>
|
62 |
+
推理代码
|
63 |
+
```python
|
64 |
+
from transformers import LlavaForConditionalGeneration, AutoProcessor
|
65 |
+
import torch
|
66 |
+
from PIL import Image
|
67 |
+
|
68 |
+
raw_model_name_or_path = "/保存的完整模型路径"
|
69 |
+
model = LlavaForConditionalGeneration.from_pretrained(raw_model_name_or_path, device_map="cuda:0", torch_dtype=torch.bfloat16)
|
70 |
+
processor = AutoProcessor.from_pretrained(raw_model_name_or_path)
|
71 |
+
model.eval()
|
72 |
+
|
73 |
+
def build_model_input(model, processor):
|
74 |
+
messages = [
|
75 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
76 |
+
{"role": "user", "content": "<image>\n 你是一位有深度的网络图片解读者,擅长解读和描述网络图片。你能洞察图片中的细微之处,对图中的人物面部表情、文字信息、情绪流露和背景寓意具有超强的理解力,描述信息需要详细。"}
|
77 |
+
]
|
78 |
+
prompt = processor.tokenizer.apply_chat_template(
|
79 |
+
messages, tokenize=False, add_generation_prompt=True
|
80 |
+
)
|
81 |
+
image = Image.open("01.PNG")
|
82 |
+
inputs = processor(text=prompt, images=image, return_tensors="pt", return_token_type_ids=False)
|
83 |
+
|
84 |
+
for tk in inputs.keys():
|
85 |
+
inputs[tk] = inputs[tk].to(model.device)
|
86 |
+
generate_ids = model.generate(**inputs, max_new_tokens=200)
|
87 |
+
|
88 |
+
generate_ids = [
|
89 |
+
oid[len(iids):] for oid, iids in zip(generate_ids, inputs.input_ids)
|
90 |
+
]
|
91 |
+
gen_text = processor.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0]
|
92 |
+
return gen_text
|
93 |
+
build_model_input(model, processor)
|
94 |
+
```
|