Update README.md
Browse files
README.md
CHANGED
@@ -3,4 +3,117 @@ license: apache-2.0
|
|
3 |
language:
|
4 |
- en
|
5 |
library_name: diffusers
|
6 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
language:
|
4 |
- en
|
5 |
library_name: diffusers
|
6 |
+
---
|
7 |
+
<div align="center">
|
8 |
+
<h1>StoryMaker: Towards consistent characters in text-to-image generation</h1>
|
9 |
+
|
10 |
+
<img src='https://img.shields.io/badge/Technique-Report-red'></a>
|
11 |
+
<a href='https://huggingface.co/RED-AIGC/StoryMaker'><img src='https://img.shields.io/static/v1?label=Paper&message=Huggingface&color=orange'></a>
|
12 |
+
|
13 |
+
</div>
|
14 |
+
StoryMaker is a personalization solution preserves not only the consistency of faces but also clothing, hairstyles and bodies in the multiple characters scene, enabling the potential to make a story consisting of a series of images.
|
15 |
+
<p align="center">
|
16 |
+
<img src="assets/day1.png">
|
17 |
+
Visualization of generated images by StoryMaker. First three rows tell a story about a day in the life of a "office worker" and the last two rows tell a story about a movie of "Before Sunrise".
|
18 |
+
</p>
|
19 |
+
|
20 |
+
## Demos
|
21 |
+
|
22 |
+
### Two Portraits Synthesis
|
23 |
+
|
24 |
+
<p align="center">
|
25 |
+
<img src="assets/two.png">
|
26 |
+
</p>
|
27 |
+
|
28 |
+
### Diverse application
|
29 |
+
|
30 |
+
<p align="center">
|
31 |
+
<img src="assets/diverse.png">
|
32 |
+
</p>
|
33 |
+
|
34 |
+
## Download
|
35 |
+
|
36 |
+
You can directly download the model from [Huggingface](https://huggingface.co/RED-AIGC/StoryMaker).
|
37 |
+
|
38 |
+
If you cannot access to Huggingface, you can use [hf-mirror](https://hf-mirror.com/) to download models.
|
39 |
+
```python
|
40 |
+
export HF_ENDPOINT=https://hf-mirror.com
|
41 |
+
huggingface-cli download --resume-download RED-AIGC/StoryMaker --local-dir checkpoints --local-dir-use-symlinks False
|
42 |
+
```
|
43 |
+
|
44 |
+
For face encoder, you need to manually download via this [URL](https://github.com/deepinsight/insightface/issues/1896#issuecomment-1023867304) to `models/buffalo_l` as the default link is invalid. Once you have prepared all models, the folder tree should be like:
|
45 |
+
|
46 |
+
```
|
47 |
+
.
|
48 |
+
βββ models
|
49 |
+
βββ checkpoints/mask.bin
|
50 |
+
βββ pipeline_sdxl_storymaker.py
|
51 |
+
βββ README.md
|
52 |
+
```
|
53 |
+
|
54 |
+
## Usage
|
55 |
+
|
56 |
+
```python
|
57 |
+
# !pip install opencv-python transformers accelerate insightface
|
58 |
+
import diffusers
|
59 |
+
|
60 |
+
import cv2
|
61 |
+
import torch
|
62 |
+
import numpy as np
|
63 |
+
from PIL import Image
|
64 |
+
|
65 |
+
from insightface.app import FaceAnalysis
|
66 |
+
from pipeline_sdxl_storymaker import StableDiffusionXLStoryMakerPipeline
|
67 |
+
|
68 |
+
# prepare 'buffalo_l' under ./models
|
69 |
+
app = FaceAnalysis(name='buffalo_l', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
|
70 |
+
app.prepare(ctx_id=0, det_size=(640, 640))
|
71 |
+
|
72 |
+
# prepare models under ./checkpoints
|
73 |
+
face_adapter = f'./checkpoints/mask.bin'
|
74 |
+
image_encoder_path = 'laion/CLIP-ViT-H-14-laion2B-s32B-b79K' # from https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K
|
75 |
+
|
76 |
+
base_model = 'huaquan/YamerMIX_v11' # from https://huggingface.co/huaquan/YamerMIX_v11
|
77 |
+
pipe = StableDiffusionXLStoryMakerPipeline.from_pretrained(
|
78 |
+
base_model,
|
79 |
+
torch_dtype=torch.float16
|
80 |
+
)
|
81 |
+
pipe.cuda()
|
82 |
+
|
83 |
+
# load adapter
|
84 |
+
pipe.load_storymaker_adapter(image_encoder_path, face_adapter, scale=0.8, lora_scale=0.8)
|
85 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
86 |
+
```
|
87 |
+
|
88 |
+
Then, you can customized your own images
|
89 |
+
|
90 |
+
```python
|
91 |
+
# load an image and mask
|
92 |
+
face_image = Image.open("examples/ldh.png").convert('RGB')
|
93 |
+
mask_image = Image.open("examples/ldh_mask.png").convert('RGB')
|
94 |
+
|
95 |
+
face_info = app.get(cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR))
|
96 |
+
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] # only use the maximum face
|
97 |
+
|
98 |
+
prompt = "a person is taking a selfie, the person is wearing a red hat, and a volcano is in the distance"
|
99 |
+
n_prompt = "bad quality, NSFW, low quality, ugly, disfigured, deformed"
|
100 |
+
|
101 |
+
generator = torch.Generator(device='cuda').manual_seed(666)
|
102 |
+
for i in range(4):
|
103 |
+
output = pipe(
|
104 |
+
image=image, mask_image=mask_image, face_info=face_info,
|
105 |
+
prompt=prompt,
|
106 |
+
negative_prompt=n_prompt,
|
107 |
+
ip_adapter_scale=0.8, lora_scale=0.8,
|
108 |
+
num_inference_steps=25,
|
109 |
+
guidance_scale=7.5,
|
110 |
+
height=1280, width=960,
|
111 |
+
generator=generator,
|
112 |
+
).images[0]
|
113 |
+
output.save(f'examples/results/ldh666_new_{i}.jpg')
|
114 |
+
```
|
115 |
+
|
116 |
+
|
117 |
+
## Acknowledgements
|
118 |
+
- Our work is highly inspired by [IP-Adapter](https://github.com/tencent-ailab/IP-Adapter) and [InstantID](https://github.com/instantX-research/InstantID). Thanks for their great works!
|
119 |
+
- Thanks [Yamer](https://civitai.com/user/Yamer) for developing [YamerMIX](https://civitai.com/models/84040?modelVersionId=309729), we use it as base model in our demo.
|