JustinLin610 commited on
Commit
03f5fb3
1 Parent(s): 7b31598

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +661 -1
README.md CHANGED
@@ -1,3 +1,663 @@
1
  ---
2
- license: other
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - zh
4
+ - en
5
+ tags:
6
+ - qwen
7
+ pipeline_tag: text-generation
8
+ inference: false
9
  ---
10
+
11
+ # Qwen-VL-Chat-Int4
12
+
13
+ <br>
14
+
15
+ <p align="center">
16
+ <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/logo.jpg" width="400"/>
17
+ <p>
18
+ <br>
19
+
20
+ <p align="center">
21
+ Qwen-VL <a href="https://modelscope.cn/models/qwen/Qwen-VL/summary">🤖 <a> | <a href="https://huggingface.co/Qwen/Qwen-VL">🤗</a>&nbsp | Qwen-VL-Chat <a href="https://modelscope.cn/models/qwen/Qwen-VL-Chat/summary">🤖 <a>| <a href="https://huggingface.co/Qwen/Qwen-VL-Chat">🤗</a>&nbsp | Qwen-VL-Chat-Int4 <a href="https://huggingface.co/Qwen/Qwen-VL-Chat-Int4">🤗</a>
22
+ <br>
23
+ <a href="assets/wechat.png">WeChat</a>&nbsp&nbsp | &nbsp&nbsp<a href="https://discord.gg/z3GAxXZ9Ce">Discord</a>&nbsp&nbsp | &nbsp&nbsp<a href="https://modelscope.cn/studios/qwen/Qwen-VL-Chat-Demo/summary">Demo</a>&nbsp | &nbsp<a href="https://arxiv.org/abs/2308.12966">Report</a>
24
+ </p>
25
+ <br>
26
+
27
+ **Qwen-VL** 是阿里云研发的大规模视觉语言模型(Large Vision Language Model, LVLM)。Qwen-VL 可以以图像、文本、检测框作为输入,并以文本和检测框作为输出。Qwen-VL 系列模型性能强大,具备多语言对话、多图交错对话等能力,并支持中文开放域定位和细粒度图像识别与理解。
28
+
29
+ **Qwen-VL** (Qwen Large Vision Language Model) is the visual multimodal version of the large model series, Qwen (abbr. Tongyi Qianwen), proposed by Alibaba Cloud. Qwen-VL accepts image, text, and bounding box as inputs, outputs text and bounding box. The features of Qwen-VL include:
30
+
31
+ 目前,我们提供了Qwen-VL和Qwen-VL-Chat两个模型,分别为预训练模型和Chat模型。如果想了解更多关于模型的信息,请点击[链接](https://github.com/QwenLM/Qwen-VL/blob/master/visual_memo.md)查看我们的技术备忘录。本仓库为Qwen-VL-Chat的量化模型Qwen-VL-Chat-Int4仓库。
32
+
33
+ We release Qwen-VL and Qwen-VL-Chat, which are pretrained model and Chat model respectively. For more details about Qwen-VL, please refer to our [technical memo](https://github.com/QwenLM/Qwen-VL/blob/master/visual_memo.md). This repo is the one for Qwen-VL-Chat-Int4.
34
+ <br>
35
+
36
+ ## 安装要求 (Requirements)
37
+
38
+ * python 3.8及以上版本
39
+ * pytorch2.0及以上版本
40
+ * 建议使用CUDA 11.4及以上
41
+ * python 3.8 and above
42
+ * pytorch 2.0 and above are recommended
43
+ * CUDA 11.4 and above are recommended
44
+ <br>
45
+
46
+ ## 快速开始 (Quickstart)
47
+
48
+ 我们提供简单的示例来说明如何利用 🤗 Transformers 快速使用Qwen-VL-Chat-Int4。
49
+
50
+ 在开始前,请确保你已经配置好环境并安装好相关的代码包。最重要的是,确保你满足上述要求,然后安装相关的依赖库。
51
+
52
+ Below, we provide simple examples to show how to use Qwen-VL-Chat-Int4 with 🤗 Transformers.
53
+
54
+ Before running the code, make sure you have setup the environment and installed the required packages. Make sure you meet the above requirements, and then install the dependent libraries.
55
+
56
+ ```bash
57
+ pip install -r requirements.txt
58
+ pip install auto-gptq optimum
59
+ ```
60
+
61
+ 接下来你可以开始使用Transformers来使用我们的模型。关于视觉模块的更多用法,请参考[教程](TUTORIAL.md)。
62
+
63
+ Now you can start with Transformers. More usage aboue vision encoder, please refer to [tutorial](TUTORIAL_zh.md).
64
+
65
+ #### 🤗 Transformers
66
+
67
+ To use Qwen-VL-Chat-Int4 for the inference, all you need to do is to input a few lines of codes as demonstrated below. However, **please make sure that you are using the latest code.**
68
+
69
+ ```python
70
+ from transformers import AutoModelForCausalLM, AutoTokenizer
71
+ import torch
72
+ torch.manual_seed(1234)
73
+
74
+ # Note: The default behavior now has injection attack prevention off.
75
+ tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-VL-Chat-Int4", trust_remote_code=True)
76
+
77
+ # use cuda device
78
+ model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL-Chat-Int4", device_map="cuda", trust_remote_code=True).eval()
79
+
80
+ # 1st dialogue turn
81
+ query = tokenizer.from_list_format([
82
+ {'image': 'https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg'},
83
+ {'text': '这是什么'},
84
+ ])
85
+ response, history = model.chat(tokenizer, query=query, history=None)
86
+ print(response)
87
+ # 图中是一名年轻女子在沙滩上和她的狗玩耍,狗的品种可能是拉布拉多。她们坐在沙滩上,狗的前腿抬起来,似乎在和人类击掌。两人之间充满了信任和爱。
88
+
89
+ # 2nd dialogue turn
90
+ response, history = model.chat(tokenizer, '输出"击掌"的检测框', history=history)
91
+ print(response)
92
+ # <ref>击掌</ref><box>(517,508),(589,611)</box>
93
+ image = tokenizer.draw_bbox_on_latest_picture(response, history)
94
+ if image:
95
+ image.save('1.jpg')
96
+ else:
97
+ print("no box")
98
+ ```
99
+
100
+ <p align="center">
101
+ <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo_highfive.jpg" width="500"/>
102
+ <p>
103
+ <br>
104
+
105
+ ## 量化 (Quantization)
106
+
107
+ ### 效果评测 (Performance)
108
+
109
+ 我们列出不同精度下模型在评测基准 **[TouchStone](https://github.com/OFA-Sys/TouchStone)** 上的表现,并发现量化模型并没有显著性能损失。结果如下所示:
110
+
111
+ We illustrate the model performance of both BF16 and Int4 models on the benchmark **[TouchStone](https://github.com/OFA-Sys/TouchStone)**, and we find that the quantized model does not suffer from significant performance degradation. Results are shown below:
112
+
113
+ | Quantization | ZH. | EN |
114
+ | ------------ | :--------: | :-----------: |
115
+ | BF16 | 401.2 | 645.2 |
116
+ | Int4 | 386.6 | 651.4 |
117
+
118
+ ### 推理速度 (Inference Speed)
119
+
120
+ 我们测算了在输入一张图片(即258个token)的条件下BF16和Int4的模型生成1792 (2048-258) 和 7934 (8192-258) 个token的平均速度。
121
+
122
+ We measured the average inference speed (tokens/s) of generating 1792 (2048-258) and 7934 (8192-258) tokens with the context of an image (which takes 258 tokens) under BF16 precision and Int4 quantization, respectively.
123
+
124
+ | Quantization | Speed (2048 tokens) | Speed (8192 tokens) |
125
+ | ------------ | :-----------------: | :-----------------: |
126
+ | BF16 | 28.87 | 24.32 |
127
+ | Int4 | 37.79 | 34.34 |
128
+
129
+ 推理速度测算是在单卡 A100-SXM4-80G GPU上运行,使用PyTorch 2.0.1及CUDA 11.4。
130
+
131
+ The profiling runs on a single A100-SXM4-80G GPU with PyTorch 2.0.1 and CUDA 11.4.
132
+
133
+ ### GPU显存占用 (GPU Memory Usage)
134
+
135
+ 我们还测算了在一张图片输入的条件下BF16和Int4模型生成1792 (2048-258) 和 7934 (8192-258) 个token所需显存。结果如下所示:
136
+
137
+ We also profile the peak GPU memory usage for encoding 1792 (2048-258) tokens (including an image) as context (and generating single token) and generating 7934 (8192-258) tokens (with an image as context) under BF16 or Int4 quantization level, respectively. The results are shown below.
138
+
139
+ | Quantization | Peak Usage for Encoding 2048 Tokens | Peak Usage for Generating 8192 Tokens |
140
+ | ------------ | :---------------------------------: | :-----------------------------------: |
141
+ | BF16 | 22.60GB | 28.01GB |
142
+ | Int4 | 11.82GB | 17.23GB |
143
+
144
+ 上述速度和显存测算使用[此脚本](https://qianwen-res.oss-cn-beijing.aliyuncs.com/profile_mm.py)完成。
145
+
146
+ The above speed and memory profiling are conducted using [this script](https://qianwen-res.oss-cn-beijing.aliyuncs.com/profile_mm.py).
147
+ <br>
148
+
149
+ ## 评测
150
+
151
+ 我们从两个角度评测了两个模型的能力:
152
+
153
+ 1. 在**英文标准 Benchmark** 上评测模型的基础任务能力。目前评测了四大类多模态任务:
154
+
155
+ - Zero-shot Caption: 评测模型在未见过数据集上的零样本图片描述能力;
156
+ - General VQA: 评测模型的通用问答能力,例如判断题、颜色、个数、类目等问答能力;
157
+ - Text-based VQA:评测模型对于图片中文字相关的识别/问答能力,例如文档问答、图表问答、文字问答等;
158
+ - Referring Expression Compression:评测模型给定物体描述画检测框的能力;
159
+ 2. **试金石 (TouchStone)**:为了评测模型整体的图文对话能力和人类对齐水平。我们为此构建了一个基于 GPT4 打分来评测 LVLM 模型的 Benchmark:TouchStone。在 TouchStone-v0.1 中:
160
+
161
+ - 评测基准总计涵盖 300+张图片、800+道题目、27个类别。包括基础属性问答、人物地标问答、影视作品问答、视觉推理、反事实推理、诗歌创作、故事写作,商品比较、图片解题等**尽可能广泛的类别**。
162
+ - 为了弥补目前 GPT4 无法直接读取图片的缺陷,我们给所有的带评测图片提供了**人工标注的充分详细描述**,并且将图片的详细描述、问题和模型的输出结果一起交给 GPT4 打分。
163
+ - 评测同时包含英文版本和中文版本。
164
+
165
+ 评测结果如下:
166
+
167
+ We evaluated the model's ability from two perspectives:
168
+
169
+ 1. **Standard Benchmarks**: We evaluate the model's basic task capabilities on four major categories of multimodal tasks:
170
+
171
+ - Zero-shot Caption: Evaluate model's zero-shot image captioning ability on unseen datasets;
172
+ - General VQA: Evaluate the general question-answering ability of pictures, such as the judgment, color, number, category, etc;
173
+ - Text-based VQA: Evaluate the model's ability to recognize text in pictures, such as document QA, chart QA, etc;
174
+ - Referring Expression Comprehension: Evaluate the ability to localize a target object in an image described by a referring expression.
175
+ 2. **TouchStone**: To evaluate the overall text-image dialogue capability and alignment level with humans, we have constructed a benchmark called TouchStone, which is based on scoring with GPT4 to evaluate the LVLM model.
176
+
177
+ - The TouchStone benchmark covers a total of 300+ images, 800+ questions, and 27 categories. Such as attribute-based Q&A, celebrity recognition, writing poetry, summarizing multiple images, product comparison, math problem solving, etc;
178
+ - In order to break the current limitation of GPT4 in terms of direct image input, TouchStone provides fine-grained image annotations by human labeling. These detailed annotations, along with the questions and the model's output, are then presented to GPT4 for scoring.
179
+ - The benchmark includes both English and Chinese versions.
180
+
181
+ The results of the evaluation are as follows:
182
+
183
+ Qwen-VL outperforms current SOTA generalist models on multiple VL tasks and has a more comprehensive coverage in terms of capability range.
184
+
185
+ <p align="center">
186
+ <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/radar.png" width="600"/>
187
+ <p>
188
+
189
+ ### 零样本图像描述 & 通用视觉问答 (Zero-shot Captioning & General VQA)
190
+
191
+ <table>
192
+ <thead>
193
+ <tr>
194
+ <th rowspan="2">Model type</th>
195
+ <th rowspan="2">Model</th>
196
+ <th colspan="2">Zero-shot Captioning</th>
197
+ <th colspan="5">General VQA</th>
198
+ </tr>
199
+ <tr>
200
+ <th>NoCaps</th>
201
+ <th>Flickr30K</th>
202
+ <th>VQAv2<sup>dev</sup></th>
203
+ <th>OK-VQA</th>
204
+ <th>GQA</th>
205
+ <th>SciQA-Img<br>(0-shot)</th>
206
+ <th>VizWiz<br>(0-shot)</th>
207
+ </tr>
208
+ </thead>
209
+ <tbody align="center">
210
+ <tr>
211
+ <td rowspan="10">Generalist<br>Models</td>
212
+ <td>Flamingo-9B</td>
213
+ <td>-</td>
214
+ <td>61.5</td>
215
+ <td>51.8</td>
216
+ <td>44.7</td>
217
+ <td>-</td>
218
+ <td>-</td>
219
+ <td>28.8</td>
220
+ </tr>
221
+ <tr>
222
+ <td>Flamingo-80B</td>
223
+ <td>-</td>
224
+ <td>67.2</td>
225
+ <td>56.3</td>
226
+ <td>50.6</td>
227
+ <td>-</td>
228
+ <td>-</td>
229
+ <td>31.6</td>
230
+ </tr>
231
+ <tr>
232
+ <td>Unified-IO-XL</td>
233
+ <td>100.0</td>
234
+ <td>-</td>
235
+ <td>77.9</td>
236
+ <td>54.0</td>
237
+ <td>-</td>
238
+ <td>-</td>
239
+ <td>-</td>
240
+ </tr>
241
+ <tr>
242
+ <td>Kosmos-1</td>
243
+ <td>-</td>
244
+ <td>67.1</td>
245
+ <td>51.0</td>
246
+ <td>-</td>
247
+ <td>-</td>
248
+ <td>-</td>
249
+ <td>29.2</td>
250
+ </tr>
251
+ <tr>
252
+ <td>Kosmos-2</td>
253
+ <td>-</td>
254
+ <td>66.7</td>
255
+ <td>45.6</td>
256
+ <td>-</td>
257
+ <td>-</td>
258
+ <td>-</td>
259
+ <td>-</td>
260
+ </tr>
261
+ <tr>
262
+ <td>BLIP-2 (Vicuna-13B)</td>
263
+ <td>103.9</td>
264
+ <td>71.6</td>
265
+ <td>65.0</td>
266
+ <td>45.9</td>
267
+ <td>32.3</td>
268
+ <td>61.0</td>
269
+ <td>19.6</td>
270
+ </tr>
271
+ <tr>
272
+ <td>InstructBLIP (Vicuna-13B)</td>
273
+ <td><strong>121.9</strong></td>
274
+ <td>82.8</td>
275
+ <td>-</td>
276
+ <td>-</td>
277
+ <td>49.5</td>
278
+ <td>63.1</td>
279
+ <td>33.4</td>
280
+ </tr>
281
+ <tr>
282
+ <td>Shikra (Vicuna-13B)</td>
283
+ <td>-</td>
284
+ <td>73.9</td>
285
+ <td>77.36</td>
286
+ <td>47.16</td>
287
+ <td>-</td>
288
+ <td>-</td>
289
+ <td>-</td>
290
+ </tr>
291
+ <tr>
292
+ <td><strong>Qwen-VL (Qwen-7B)</strong></td>
293
+ <td>121.4</td>
294
+ <td><b>85.8</b></td>
295
+ <td><b>78.8</b></td>
296
+ <td><b>58.6</b></td>
297
+ <td><b>59.3</b></td>
298
+ <td>67.1</td>
299
+ <td>35.2</td>
300
+ </tr>
301
+ <!-- <tr>
302
+ <td>Qwen-VL (4-shot)</td>
303
+ <td>-</td>
304
+ <td>-</td>
305
+ <td>-</td>
306
+ <td>63.6</td>
307
+ <td>-</td>
308
+ <td>-</td>
309
+ <td>39.1</td>
310
+ </tr> -->
311
+ <tr>
312
+ <td>Qwen-VL-Chat</td>
313
+ <td>120.2</td>
314
+ <td>81.0</td>
315
+ <td>78.2</td>
316
+ <td>56.6</td>
317
+ <td>57.5</td>
318
+ <td><b>68.2</b></td>
319
+ <td><b>38.9</b></td>
320
+ </tr>
321
+ <!-- <tr>
322
+ <td>Qwen-VL-Chat (4-shot)</td>
323
+ <td>-</td>
324
+ <td>-</td>
325
+ <td>-</td>
326
+ <td>60.6</td>
327
+ <td>-</td>
328
+ <td>-</td>
329
+ <td>44.45</td>
330
+ </tr> -->
331
+ <tr>
332
+ <td>Previous SOTA<br>(Per Task Fine-tuning)</td>
333
+ <td>-</td>
334
+ <td>127.0<br>(PALI-17B)</td>
335
+ <td>84.5<br>(InstructBLIP<br>-FlanT5-XL)</td>
336
+ <td>86.1<br>(PALI-X<br>-55B)</td>
337
+ <td>66.1<br>(PALI-X<br>-55B)</td>
338
+ <td>72.1<br>(CFR)</td>
339
+ <td>92.53<br>(LLaVa+<br>GPT-4)</td>
340
+ <td>70.9<br>(PALI-X<br>-55B)</td>
341
+ </tr>
342
+ </tbody>
343
+ </table>
344
+
345
+ - 在 Zero-shot Caption 中,Qwen-VL 在 Flickr30K 数据集上取得了 **SOTA** 的结果,并在 Nocaps 数据集上取得了和 InstructBlip 可竞争的结果。
346
+ - 在 General VQA 中,Qwen-VL 取得了 LVLM 模型同等量级和设定下 **SOTA** 的结果。
347
+ - For zero-shot image captioning, Qwen-VL achieves the **SOTA** on Flickr30K and competitive results on Nocaps with InstructBlip.
348
+ - For general VQA, Qwen-VL achieves the **SOTA** under the same generalist LVLM scale settings.
349
+
350
+ ### 文本导向的视觉问答 (Text-oriented VQA)
351
+
352
+ <table>
353
+ <thead>
354
+ <tr>
355
+ <th>Model type</th>
356
+ <th>Model</th>
357
+ <th>TextVQA</th>
358
+ <th>DocVQA</th>
359
+ <th>ChartQA</th>
360
+ <th>AI2D</th>
361
+ <th>OCR-VQA</th>
362
+ </tr>
363
+ </thead>
364
+ <tbody align="center">
365
+ <tr>
366
+ <td rowspan="5">Generalist Models</td>
367
+ <td>BLIP-2 (Vicuna-13B)</td>
368
+ <td>42.4</td>
369
+ <td>-</td>
370
+ <td>-</td>
371
+ <td>-</td>
372
+ <td>-</td>
373
+ </tr>
374
+ <tr>
375
+ <td>InstructBLIP (Vicuna-13B)</td>
376
+ <td>50.7</td>
377
+ <td>-</td>
378
+ <td>-</td>
379
+ <td>-</td>
380
+ <td>-</td>
381
+ </tr>
382
+ <tr>
383
+ <td>mPLUG-DocOwl (LLaMA-7B)</td>
384
+ <td>52.6</td>
385
+ <td>62.2</td>
386
+ <td>57.4</td>
387
+ <td>-</td>
388
+ <td>-</td>
389
+ </tr>
390
+ <tr>
391
+ <td>Pic2Struct-Large (1.3B)</td>
392
+ <td>-</td>
393
+ <td><b>76.6</b></td>
394
+ <td>58.6</td>
395
+ <td>42.1</td>
396
+ <td>71.3</td>
397
+ </tr>
398
+ <tr>
399
+ <td>Qwen-VL (Qwen-7B)</td>
400
+ <td><b>63.8</b></td>
401
+ <td>65.1</td>
402
+ <td><b>65.7</b></td>
403
+ <td><b>62.3</b></td>
404
+ <td><b>75.7</b></td>
405
+ </tr>
406
+ <tr>
407
+ <td>Specialist SOTAs<br>(Specialist/Finetuned)</td>
408
+ <td>PALI-X-55B (Single-task FT)<br>(Without OCR Pipeline)</td>
409
+ <td>71.44</td>
410
+ <td>80.0</td>
411
+ <td>70.0</td>
412
+ <td>81.2</td>
413
+ <td>75.0</td>
414
+ </tr>
415
+ </tbody>
416
+ </table>
417
+
418
+ - 在文字相关的识别/问答评测上,取得了当前规模下通用 LVLM 达到的最好结果。
419
+ - 分辨率对上述某几个评测非常重要,大部分 224 分辨率的开源 LVLM 模型无法完成以上评测,或只能通过切图的方式解决。Qwen-VL 将分辨率提升到 448,可以直接以端到端的方式进行以上评测。Qwen-VL 在很多任务上甚至超过了 1024 分辨率的 Pic2Struct-Large 模型。
420
+ - In text-related recognition/QA evaluation, Qwen-VL achieves the SOTA under the generalist LVLM scale settings.
421
+ - Resolution is important for several above evaluations. While most open-source LVLM models with 224 resolution are incapable of these evaluations or can only solve these by cutting images, Qwen-VL scales the resolution to 448 so that it can be evaluated end-to-end. Qwen-VL even outperforms Pic2Struct-Large models of 1024 resolution on some tasks.
422
+
423
+ ### 细粒度视觉定位 (Referring Expression Comprehension)
424
+
425
+ <table>
426
+ <thead>
427
+ <tr>
428
+ <th rowspan="2">Model type</th>
429
+ <th rowspan="2">Model</th>
430
+ <th colspan="3">RefCOCO</th>
431
+ <th colspan="3">RefCOCO+</th>
432
+ <th colspan="2">RefCOCOg</th>
433
+ <th>GRIT</th>
434
+ </tr>
435
+ <tr>
436
+ <th>val</th>
437
+ <th>test-A</th>
438
+ <th>test-B</th>
439
+ <th>val</th>
440
+ <th>test-A</th>
441
+ <th>test-B</th>
442
+ <th>val-u</th>
443
+ <th>test-u</th>
444
+ <th>refexp</th>
445
+ </tr>
446
+ </thead>
447
+ <tbody align="center">
448
+ <tr>
449
+ <td rowspan="8">Generalist Models</td>
450
+ <td>GPV-2</td>
451
+ <td>-</td>
452
+ <td>-</td>
453
+ <td>-</td>
454
+ <td>-</td>
455
+ <td>-</td>
456
+ <td>-</td>
457
+ <td>-</td>
458
+ <td>-</td>
459
+ <td>51.50</td>
460
+ </tr>
461
+ <tr>
462
+ <td>OFA-L*</td>
463
+ <td>79.96</td>
464
+ <td>83.67</td>
465
+ <td>76.39</td>
466
+ <td>68.29</td>
467
+ <td>76.00</td>
468
+ <td>61.75</td>
469
+ <td>67.57</td>
470
+ <td>67.58</td>
471
+ <td>61.70</td>
472
+ </tr>
473
+ <tr>
474
+ <td>Unified-IO</td>
475
+ <td>-</td>
476
+ <td>-</td>
477
+ <td>-</td>
478
+ <td>-</td>
479
+ <td>-</td>
480
+ <td>-</td>
481
+ <td>-</td>
482
+ <td>-</td>
483
+ <td><b>78.61</b></td>
484
+ </tr>
485
+ <tr>
486
+ <td>VisionLLM-H</td>
487
+ <td></td>
488
+ <td>86.70</td>
489
+ <td>-</td>
490
+ <td>-</td>
491
+ <td>-</td>
492
+ <td>-</td>
493
+ <td>-</td>
494
+ <td>-</td>
495
+ <td>-</td>
496
+ </tr>
497
+ <tr>
498
+ <td>Shikra-7B</td>
499
+ <td>87.01</td>
500
+ <td>90.61</td>
501
+ <td>80.24 </td>
502
+ <td>81.60</td>
503
+ <td>87.36</td>
504
+ <td>72.12</td>
505
+ <td>82.27</td>
506
+ <td>82.19</td>
507
+ <td>69.34</td>
508
+ </tr>
509
+ <tr>
510
+ <td>Shikra-13B</td>
511
+ <td>87.83 </td>
512
+ <td>91.11</td>
513
+ <td>81.81</td>
514
+ <td>82.89</td>
515
+ <td>87.79</td>
516
+ <td>74.41</td>
517
+ <td>82.64</td>
518
+ <td>83.16</td>
519
+ <td>69.03</td>
520
+ </tr>
521
+ <tr>
522
+ <td>Qwen-VL-7B</td>
523
+ <td><b>89.36</b></td>
524
+ <td>92.26</td>
525
+ <td><b>85.34</b></td>
526
+ <td><b>83.12</b></td>
527
+ <td>88.25</td>
528
+ <td><b>77.21</b></td>
529
+ <td>85.58</td>
530
+ <td>85.48</td>
531
+ <td>78.22</td>
532
+ </tr>
533
+ <tr>
534
+ <td>Qwen-VL-7B-Chat</td>
535
+ <td>88.55</td>
536
+ <td><b>92.27</b></td>
537
+ <td>84.51</td>
538
+ <td>82.82</td>
539
+ <td><b>88.59</b></td>
540
+ <td>76.79</td>
541
+ <td><b>85.96</b></td>
542
+ <td><b>86.32</b></td>
543
+ <td>-</td>
544
+ <tr>
545
+ <td rowspan="3">Specialist SOTAs<br>(Specialist/Finetuned)</td>
546
+ <td>G-DINO-L</td>
547
+ <td>90.56&nbsp;&nbsp;</td>
548
+ <td>93.19</td>
549
+ <td>88.24</td>
550
+ <td>82.75</td>
551
+ <td>88.95</td>
552
+ <td>75.92</td>
553
+ <td>86.13</td>
554
+ <td>87.02</td>
555
+ <td>-</td>
556
+ </tr>
557
+ <tr>
558
+ <td>UNINEXT-H</td>
559
+ <td>92.64 </td>
560
+ <td>94.33</td>
561
+ <td>91.46</td>
562
+ <td>85.24</td>
563
+ <td>89.63</td>
564
+ <td>79.79</td>
565
+ <td>88.73</td>
566
+ <td>89.37</td>
567
+ <td>-</td>
568
+ </tr>
569
+ <tr>
570
+ <td>ONE-PEACE</td>
571
+ <td>92.58 </td>
572
+ <td>94.18</td>
573
+ <td>89.26</td>
574
+ <td>88.77</td>
575
+ <td>92.21</td>
576
+ <td>83.23</td>
577
+ <td>89.22</td>
578
+ <td>89.27</td>
579
+ <td>-</td>
580
+ </tr>
581
+ </tbody>
582
+ </table>
583
+
584
+ - 在定位任务上,Qwen-VL 全面超过 Shikra-13B,取得了目前 Generalist LVLM 模型上在 Refcoco 上的 **SOTA**。
585
+ - Qwen-VL 并没有在任何中文定位数据上训练过,但通过中文 Caption 数据和 英文 Grounding 数据的训练,可以 Zero-shot 泛化出中文 Grounding 能力。
586
+
587
+ 我们提供了以上**所有**评测脚本以供复现我们的实验结果。请阅读 [eval/EVALUATION.md](eval/EVALUATION.md) 了解更多信息。
588
+
589
+ - Qwen-VL achieves the **SOTA** in all above referring expression comprehension benchmarks.
590
+ - Qwen-VL has not been trained on any Chinese grounding data, but it can still generalize to the Chinese Grounding tasks in a zero-shot way by training Chinese Caption data and English Grounding data.
591
+
592
+ We provide all of the above evaluation scripts for reproducing our experimental results. Please read [eval/EVALUATION.md](eval/EVALUATION.md) for more information.
593
+
594
+ ### 闲聊能力测评 (Chat Evaluation)
595
+
596
+ TouchStone 是一个基于 GPT4 打分来评测 LVLM 模型的图文对话能力和人类对齐水平的基准。它涵盖了 300+张图片、800+道题目、27个类别,包括基础属性、人物地标、视觉推理、诗歌创作、故事写作、商品比较、图片解题等**尽可能广泛的类别**。关于 TouchStone 的详细介绍,请参考[touchstone/README_CN.md](touchstone/README_CN.md)了解更多信息。
597
+
598
+ TouchStone is a benchmark based on scoring with GPT4 to evaluate the abilities of the LVLM model on text-image dialogue and alignment levels with humans. It covers a total of 300+ images, 800+ questions, and 27 categories, such as attribute-based Q&A, celebrity recognition, writing poetry, summarizing multiple images, product comparison, math problem solving, etc. Please read [touchstone/README_CN.md](touchstone/README.md) for more information.
599
+
600
+ #### 英语 (English)
601
+
602
+ | Model | Score |
603
+ |---------------|-------|
604
+ | PandaGPT | 488.5 |
605
+ | MiniGPT4 | 531.7 |
606
+ | InstructBLIP | 552.4 |
607
+ | LLaMA-AdapterV2 | 590.1 |
608
+ | mPLUG-Owl | 605.4 |
609
+ | LLaVA | 602.7 |
610
+ | Qwen-VL-Chat | 645.2 |
611
+
612
+ #### 中文 (Chinese)
613
+
614
+ | Model | Score |
615
+ |---------------|-------|
616
+ | VisualGLM | 247.1 |
617
+ | Qwen-VL-Chat | 401.2 |
618
+
619
+ Qwen-VL-Chat 模型在中英文的对齐评测中均取得当前 LVLM 模型下的最好结果。
620
+
621
+ Qwen-VL-Chat has achieved the best results in both Chinese and English alignment evaluation.
622
+ <br>
623
+
624
+ ## 常见问题 (FAQ)
625
+
626
+ 如遇到问题,敬请查阅 [FAQ](https://github.com/QwenLM/Qwen-VL/blob/master/FAQ_zh.md)以及issue区,如仍无法解决再提交issue。
627
+
628
+ If you meet problems, please refer to [FAQ](https://github.com/QwenLM/Qwen-VL/blob/master/FAQ.md) and the issues first to search a solution before you launch a new issue.
629
+ <br>
630
+
631
+ ## 使用协议 (License Agreement)
632
+
633
+ 研究人员与开发者可使用Qwen-VL和Qwen-VL-Chat或进行二次开发。我们同样允许商业使用,具体细节请查看[LICENSE](https://github.com/QwenLM/Qwen-VL/blob/master/LICENSE)。如需商用,请填写[问卷](https://dashscope.console.aliyun.com/openModelApply/qianwen)申请。
634
+
635
+ Researchers and developers are free to use the codes and model weights of both Qwen-VL and Qwen-VL-Chat. We also allow their commercial use. Check our license at [LICENSE](LICENSE) for more details.
636
+ <br>
637
+
638
+ ## 引用 (Citation)
639
+
640
+ 如果你觉得我们的论文和代码对你的研究有帮助,请考虑:star: 和引用 :pencil: :)
641
+
642
+ If you find our paper and code useful in your research, please consider giving a star :star: and citation :pencil: :)
643
+
644
+ ```BibTeX
645
+ @article{Qwen-VL,
646
+ title={Qwen-VL: A Frontier Large Vision-Language Model with Versatile Abilities},
647
+ author={Bai, Jinze and Bai, Shuai and Yang, Shusheng and Wang, Shijie and Tan, Sinan and Wang, Peng and Lin, Junyang and Zhou, Chang and Zhou, Jingren},
648
+ journal={arXiv preprint arXiv:2308.12966},
649
+ year={2023}
650
+ }
651
+ ```
652
+ <br>
653
+
654
+ ## 联系我们 (Contact Us)
655
+
656
+ 如果你想给我们的研发团队和产品团队留言,请通过邮件([email protected])联系我们。
657
+
658
+ If you are interested to leave a message to either our research team or product team, feel free to send an email to [email protected].
659
+
660
+ ```
661
+
662
+ ```
663
+