File size: 6,777 Bytes
20dea38 bac0d01 20dea38 3ffd731 20dea38 7c0a8dc 20dea38 7c0a8dc 2ebdfe8 20dea38 2ebdfe8 20dea38 c096839 20dea38 c096839 20dea38 2ebdfe8 20dea38 f28e641 20dea38 f28e641 20dea38 2ebdfe8 20dea38 2ebdfe8 b6306e1 2ebdfe8 20dea38 2ebdfe8 20dea38 b6306e1 20dea38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
---
license: apache-2.0
license_link: https://huggingface.co./Qwen/QWQ-32B/blob/main/LICENSE
language:
- en
pipeline_tag: text-generation
base_model: Qwen/Qwen2.5-32B
tags:
- chat
library_name: transformers
---
# QwQ-32B
<a href="https://chat.qwenlm.ai/" target="_blank" style="margin: 2px;">
<img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/>
</a>
## Introduction
QwQ is the reasoning model of the Qwen series. Compared with conventional instruction-tuned models, QwQ, which is capable of thinking and reasoning, can achieve significantly enhanced performance in downstream tasks, especially hard problems. QwQ-32B is the medium-sized reasoning model, which is capable of achieving competitive performance against state-of-the-art reasoning models, e.g., DeepSeek-R1, o1-mini.
<p align="center">
<img width="100%" src="figures/benchmark.jpg">
</p>
**This repo contains the QwQ 32B model**, which has the following features:
- Type: Causal Language Models
- Training Stage: Pretraining & Post-training (Supervised Finetuning and Reinforcement Learning)
- Architecture: transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias
- Number of Parameters: 32.5B
- Number of Paramaters (Non-Embedding): 31.0B
- Number of Layers: 64
- Number of Attention Heads (GQA): 40 for Q and 8 for KV
- Context Length: Full 131,072 tokens
**Note:** For the best experience, please review the [usage guidelines](#usage-guidelines) before deploying QwQ models.
You can try our [demo](https://huggingface.co./spaces/Qwen/QwQ-32B-Demo) or access QwQ models via [QwenChat](https://chat.qwen.ai).
For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwq-32b/), [GitHub](https://github.com/QwenLM/Qwen2.5), and [Documentation](https://qwen.readthedocs.io/en/latest/).
## Requirements
QwQ is based on Qwen2.5, whose code has been in the latest Hugging face `transformers`. We advise you to use the latest version of `transformers`.
With `transformers<4.37.0`, you will encounter the following error:
```
KeyError: 'qwen2'
```
## Quickstart
Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Qwen/QwQ-32B"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r's are in the word \"strawberry\""
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=32768
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```
### Usage Guidelines
To achieve optimal performance, we recommend the following settings:
1. **Enforce Thoughtful Output**: Ensure the model starts with "\<think\>\n" to prevent generating empty thinking content, which can degrade output quality. If you use `apply_chat_template` and set `add_generation_prompt=True`, this is already automatically implemented, but it may cause the response to lack the \<think\> tag at the beginning. This is normal behavior.
2. **Sampling Parameters**:
- Use Temperature=0.6 and TopP=0.95 instead of Greedy decoding to avoid endless repetitions.
- Use TopK between 20 and 40 to filter out rare token occurrences while maintaining the diversity of the generated output.
3. **No Thinking Content in History**: In multi-turn conversations, the historical model output should only include the final output part and does not need to include the thinking content. This feature is already implemented in `apply_chat_template`.
4. **Standardize Output Format**: We recommend using prompts to standardize model outputs when benchmarking.
- **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt.
- **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g.,`\"answer\": \"C\"`." in the prompt.
5. **Handle Long Inputs**: For inputs exceeding 32,768 tokens, enable [YaRN](https://arxiv.org/abs/2309.00071) to improve the model's ability to capture long-sequence information effectively.
For supported frameworks, you could add the following to `config.json` to enable YaRN:
```json
{
...,
"rope_scaling": {
"factor": 4.0,
"original_max_position_embeddings": 32768,
"type": "yarn"
}
}
```
For deployment, we recommend using vLLM. Please refer to our [Documentation](https://qwen.readthedocs.io/en/latest/deployment/vllm.html) for usage if you are not familar with vLLM.
Presently, vLLM only supports static YARN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts**.
We advise adding the `rope_scaling` configuration only when processing long contexts is required.
## Evaluation & Performance
Detailed evaluation results are reported in this [📑 blog](https://qwenlm.github.io/blog/qwq-32b/).
For requirements on GPU memory and the respective throughput, see results [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html).
## Citation
If you find our work helpful, feel free to give us a cite.
```
@misc{qwq32b,
title = {QwQ-32B: Embracing the Power of Reinforcement Learning},
url = {https://qwenlm.github.io/blog/qwq-32b/},
author = {Qwen Team},
month = {March},
year = {2025}
}
@article{qwen2.5,
title={Qwen2.5 Technical Report},
author={An Yang and Baosong Yang and Beichen Zhang and Binyuan Hui and Bo Zheng and Bowen Yu and Chengyuan Li and Dayiheng Liu and Fei Huang and Haoran Wei and Huan Lin and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Yang and Jiaxi Yang and Jingren Zhou and Junyang Lin and Kai Dang and Keming Lu and Keqin Bao and Kexin Yang and Le Yu and Mei Li and Mingfeng Xue and Pei Zhang and Qin Zhu and Rui Men and Runji Lin and Tianhao Li and Tianyi Tang and Tingyu Xia and Xingzhang Ren and Xuancheng Ren and Yang Fan and Yang Su and Yichang Zhang and Yu Wan and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zihan Qiu},
journal={arXiv preprint arXiv:2412.15115},
year={2024}
}
``` |