|
from transformers.modeling_utils import PretrainedConfig
|
|
|
|
class RasphiConfig(PretrainedConfig):
|
|
model_type = "rasphi"
|
|
keys_to_ignore_at_inference = ["past_key_values"]
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_size=32064,
|
|
hidden_size=4096,
|
|
intermediate_size=6400,
|
|
num_hidden_layers=32,
|
|
num_attention_heads=32,
|
|
num_key_value_heads=8,
|
|
hidden_act="silu",
|
|
max_position_embeddings=4096 * 32,
|
|
initializer_range=0.02,
|
|
rms_norm_eps=1e-5,
|
|
use_cache=True,
|
|
pad_token_id=None,
|
|
bos_token_id=1,
|
|
eos_token_id=2,
|
|
tie_word_embeddings=False,
|
|
rope_theta=1e6,
|
|
rope_scaling=None,
|
|
sliding_window=None,
|
|
attention_dropout=0.0,
|
|
num_experts_per_tok=2,
|
|
num_local_experts=16,
|
|
output_router_logits=False,
|
|
router_aux_loss_coef=0.001,
|
|
router_jitter_noise=0.01,
|
|
input_jitter_noise=0.0,
|
|
attention_bias=False,
|
|
lm_head_bias=False,
|
|
|
|
num_reasoning_experts=8,
|
|
num_content_experts=8,
|
|
reasoning_hidden_size=2048,
|
|
content_hidden_size=2048,
|
|
stream_interaction="attention",
|
|
**kwargs,
|
|
):
|
|
self.vocab_size = vocab_size
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.hidden_size = hidden_size
|
|
self.intermediate_size = intermediate_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.sliding_window = sliding_window
|
|
self.attention_bias = attention_bias
|
|
self.lm_head_bias = lm_head_bias
|
|
self.num_key_value_heads = num_key_value_heads
|
|
self.hidden_act = hidden_act
|
|
self.initializer_range = initializer_range
|
|
self.rms_norm_eps = rms_norm_eps
|
|
self.use_cache = use_cache
|
|
self.rope_theta = rope_theta
|
|
self.attention_dropout = attention_dropout
|
|
self.num_experts_per_tok = num_experts_per_tok
|
|
self.num_local_experts = num_local_experts
|
|
self.output_router_logits = output_router_logits
|
|
self.router_aux_loss_coef = router_aux_loss_coef
|
|
self.router_jitter_noise = router_jitter_noise
|
|
self.input_jitter_noise = input_jitter_noise
|
|
self.rope_scaling = rope_scaling
|
|
self._rope_scaling_validation()
|
|
|
|
|
|
self.num_reasoning_experts = num_reasoning_experts
|
|
self.num_content_experts = num_content_experts
|
|
self.reasoning_hidden_size = reasoning_hidden_size
|
|
self.content_hidden_size = content_hidden_size
|
|
self.stream_interaction = stream_interaction
|
|
|
|
super().__init__(
|
|
pad_token_id=pad_token_id,
|
|
bos_token_id=bos_token_id,
|
|
eos_token_id=eos_token_id,
|
|
tie_word_embeddings=tie_word_embeddings,
|
|
**kwargs,
|
|
)
|
|
|
|
def _rope_scaling_validation(self):
|
|
"""
|
|
Validate the `rope_scaling` configuration.
|
|
"""
|
|
if self.rope_scaling is None:
|
|
return
|
|
|
|
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 6:
|
|
raise ValueError(
|
|
"`rope_scaling` must be a dictionary with three fields, `type`, `short_factor`, `long_factor`, "
|
|
f"`short_mscale`, `long_mscale` and `original_max_position_embeddings`, got {self.rope_scaling}"
|
|
)
|
|
rope_scaling_type = self.rope_scaling.get("type", None)
|
|
rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
|
|
rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
|
|
rope_scaling_short_mscale = self.rope_scaling.get("short_mscale", None)
|
|
rope_scaling_long_mscale = self.rope_scaling.get("long_mscale", None)
|
|
original_max_position_embeddings = self.rope_scaling.get("original_max_position_embeddings", None)
|
|
if rope_scaling_type is None or rope_scaling_type not in ["longrope"]:
|
|
raise ValueError(f"`rope_scaling`'s type field must be one of ['longrope'], got {rope_scaling_type}")
|
|
if not (
|
|
isinstance(rope_scaling_short_factor, list)
|
|
and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
|
|
):
|
|
raise ValueError(
|
|
f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
|
|
)
|
|
if not len(rope_scaling_short_factor) == self.hidden_size // self.num_attention_heads // 2:
|
|
raise ValueError(
|
|
f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}"
|
|
)
|
|
if not (
|
|
isinstance(rope_scaling_long_factor, list)
|
|
and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
|
|
):
|
|
raise ValueError(
|
|
f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
|
|
)
|
|
if not len(rope_scaling_long_factor) == self.hidden_size // self.num_attention_heads // 2:
|
|
raise ValueError(
|
|
f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}"
|
|
)
|
|
if not isinstance(rope_scaling_short_mscale, (int, float)):
|
|
raise ValueError(
|
|
f"`rope_scaling`'s short_mscale field must be a number, got {rope_scaling_short_mscale}"
|
|
)
|
|
if not isinstance(rope_scaling_long_mscale, (int, float)):
|
|
raise ValueError(
|
|
f"`rope_scaling`'s long_mscale field must be a number, got {rope_scaling_long_mscale}"
|
|
)
|
|
if not isinstance(original_max_position_embeddings, int):
|
|
raise ValueError(
|
|
f"`rope_scaling`'s original_max_position_embeddings field must be an integer, got {original_max_position_embeddings}"
|
|
)
|
|
|