File size: 41,261 Bytes
e187c98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 |
import torch
import torch.nn as nn
from transformers.modeling_outputs import MoeModelOutputWithPast, MoeCausalLMOutputWithPast
from transformers.modeling_utils import PreTrainedModel, PretrainedConfig
from torch.nn import CrossEntropyLoss
from typing import Optional, Tuple, Union, List
import torch.nn.functional as F
import math
ACT2FN = {
"relu": F.relu,
"silu": F.silu,
"gelu": F.gelu,
"tanh": torch.tanh,
"sigmoid": torch.sigmoid,
}
class RasphiDecoderLayer(nn.Module):
def __init__(self, config: RasphiConfig, layer_idx: int):
super().__init__()
self.layer_idx = layer_idx
self.hidden_size = config.hidden_size
self.reasoning_hidden_size = config.reasoning_hidden_size
self.content_hidden_size = config.content_hidden_size
# Attention layers
self.reasoning_self_attn = RasphiAttention(config, self.reasoning_hidden_size, layer_idx)
self.content_self_attn = RasphiAttention(config, self.content_hidden_size, layer_idx)
# MoE layers
self.reasoning_moe = RasphiSparseMoeBlock(config, is_reasoning=True)
self.content_moe = RasphiSparseMoeBlock(config, is_reasoning=False)
# Layer norms
self.reasoning_input_layernorm = nn.LayerNorm(self.reasoning_hidden_size, eps=config.rms_norm_eps)
self.reasoning_post_attention_layernorm = nn.LayerNorm(self.reasoning_hidden_size, eps=config.rms_norm_eps)
self.content_input_layernorm = nn.LayerNorm(self.content_hidden_size, eps=config.rms_norm_eps)
self.content_post_attention_layernorm = nn.LayerNorm(self.content_hidden_size, eps=config.rms_norm_eps)
# Stream interaction
self.stream_interaction = config.stream_interaction
if self.stream_interaction in ["attention", "both"]:
self.reasoning_to_content_attn = RasphiAttention(config, self.content_hidden_size, layer_idx)
self.content_to_reasoning_attn = RasphiAttention(config, self.reasoning_hidden_size, layer_idx)
if self.stream_interaction in ["mlp", "both"]:
self.reasoning_to_content_mlp = nn.Linear(self.reasoning_hidden_size, self.content_hidden_size)
self.content_to_reasoning_mlp = nn.Linear(self.content_hidden_size, self.reasoning_hidden_size)
def forward(
self,
reasoning_hidden_states: torch.Tensor,
content_hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
output_router_logits: Optional[bool] = False,
use_cache: Optional[bool] = False,
) -> Tuple[torch.FloatTensor, ...]:
# Self Attention for both streams
reasoning_residual = reasoning_hidden_states
content_residual = content_hidden_states
reasoning_hidden_states = self.reasoning_input_layernorm(reasoning_hidden_states)
content_hidden_states = self.content_input_layernorm(content_hidden_states)
reasoning_self_attn_output, reasoning_self_attn_weights, reasoning_present_key_value = self.reasoning_self_attn(
hidden_states=reasoning_hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value[0] if past_key_value is not None else None,
output_attentions=output_attentions,
use_cache=use_cache,
)
content_self_attn_output, content_self_attn_weights, content_present_key_value = self.content_self_attn(
hidden_states=content_hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value[1] if past_key_value is not None else None,
output_attentions=output_attentions,
use_cache=use_cache,
)
reasoning_hidden_states = reasoning_residual + reasoning_self_attn_output
content_hidden_states = content_residual + content_self_attn_output
# Stream Interaction
if self.stream_interaction in ["attention", "both"]:
reasoning_to_content, _, _ = self.reasoning_to_content_attn(
hidden_states=content_hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=None,
output_attentions=False,
use_cache=False,
key_value_states=reasoning_hidden_states,
)
content_to_reasoning, _, _ = self.content_to_reasoning_attn(
hidden_states=reasoning_hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=None,
output_attentions=False,
use_cache=False,
key_value_states=content_hidden_states,
)
reasoning_hidden_states = reasoning_hidden_states + content_to_reasoning
content_hidden_states = content_hidden_states + reasoning_to_content
if self.stream_interaction in ["mlp", "both"]:
reasoning_to_content = self.reasoning_to_content_mlp(reasoning_hidden_states)
content_to_reasoning = self.content_to_reasoning_mlp(content_hidden_states)
reasoning_hidden_states = reasoning_hidden_states + content_to_reasoning
content_hidden_states = content_hidden_states + reasoning_to_content
# MoE for both streams
reasoning_residual = reasoning_hidden_states
content_residual = content_hidden_states
reasoning_hidden_states = self.reasoning_post_attention_layernorm(reasoning_hidden_states)
content_hidden_states = self.content_post_attention_layernorm(content_hidden_states)
reasoning_moe_output, reasoning_router_logits = self.reasoning_moe(reasoning_hidden_states)
content_moe_output, content_router_logits = self.content_moe(content_hidden_states)
reasoning_hidden_states = reasoning_residual + reasoning_moe_output
content_hidden_states = content_residual + content_moe_output
outputs = (reasoning_hidden_states, content_hidden_states)
if use_cache:
outputs += ((reasoning_present_key_value, content_present_key_value),)
if output_attentions:
outputs += (reasoning_self_attn_weights, content_self_attn_weights)
if output_router_logits:
outputs += (reasoning_router_logits, content_router_logits)
return outputs
class RasphiModel(PreTrainedModel):
config_class = RasphiConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["RasphiDecoderLayer"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_cache_class = True
def __init__(self, config: RasphiConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.reasoning_embed_tokens = nn.Embedding(config.vocab_size, config.reasoning_hidden_size, self.padding_idx)
self.content_embed_tokens = nn.Embedding(config.vocab_size, config.content_hidden_size, self.padding_idx)
self.layers = nn.ModuleList([RasphiDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
self.reasoning_norm = nn.LayerNorm(config.reasoning_hidden_size, eps=config.rms_norm_eps, elementwise_affine=True)
self.content_norm = nn.LayerNorm(config.content_hidden_size, eps=config.rms_norm_eps, elementwise_affine=True)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return (self.reasoning_embed_tokens, self.content_embed_tokens)
def set_input_embeddings(self, value):
self.reasoning_embed_tokens = value[0]
self.content_embed_tokens = value[1]
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MoeModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_router_logits = (
output_router_logits if output_router_logits is not None else self.config.output_router_logits
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
if inputs_embeds is None:
reasoning_inputs_embeds = self.reasoning_embed_tokens(input_ids)
content_inputs_embeds = self.content_embed_tokens(input_ids)
else:
reasoning_inputs_embeds = inputs_embeds[:, :, :self.config.reasoning_hidden_size]
content_inputs_embeds = inputs_embeds[:, :, self.config.reasoning_hidden_size:]
reasoning_hidden_states = reasoning_inputs_embeds
content_hidden_states = content_inputs_embeds
# decoder layers
all_reasoning_hidden_states = () if output_hidden_states else None
all_content_hidden_states = () if output_hidden_states else None
all_reasoning_self_attns = () if output_attentions else None
all_content_self_attns = () if output_attentions else None
all_reasoning_router_logits = () if output_router_logits else None
all_content_router_logits = () if output_router_logits else None
next_decoder_cache = None
for decoder_layer in self.layers:
if output_hidden_states:
all_reasoning_hidden_states += (reasoning_hidden_states,)
all_content_hidden_states += (content_hidden_states,)
layer_outputs = decoder_layer(
reasoning_hidden_states,
content_hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
output_router_logits=output_router_logits,
use_cache=use_cache,
)
reasoning_hidden_states = layer_outputs[0]
content_hidden_states = layer_outputs[1]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_reasoning_self_attns += (layer_outputs[2],)
all_content_self_attns += (layer_outputs[3],)
if output_router_logits:
all_reasoning_router_logits += (layer_outputs[-2],)
all_content_router_logits += (layer_outputs[-1],)
reasoning_hidden_states = self.reasoning_norm(reasoning_hidden_states)
content_hidden_states = self.content_norm(content_hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_reasoning_hidden_states += (reasoning_hidden_states,)
all_content_hidden_states += (content_hidden_states,)
next_cache = None
if use_cache:
next_cache = next_decoder_cache
if not return_dict:
return tuple(
v
for v in [reasoning_hidden_states, content_hidden_states, next_cache, all_reasoning_hidden_states,
all_content_hidden_states, all_reasoning_self_attns, all_content_self_attns,
all_reasoning_router_logits, all_content_router_logits]
if v is not None
)
return MoeModelOutputWithPast(
last_hidden_state=(reasoning_hidden_states, content_hidden_states),
past_key_values=next_cache,
hidden_states=(all_reasoning_hidden_states, all_content_hidden_states),
attentions=(all_reasoning_self_attns, all_content_self_attns),
router_logits=(all_reasoning_router_logits, all_content_router_logits),
)
class RasphiSparseMoeBlock(nn.Module):
def __init__(self, config: RasphiConfig, is_reasoning: bool):
super().__init__()
self.hidden_dim = config.reasoning_hidden_size if is_reasoning else config.content_hidden_size
self.ffn_dim = config.intermediate_size
self.num_experts = config.num_reasoning_experts if is_reasoning else config.num_content_experts
self.top_k = config.num_experts_per_tok
# gating
self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
self.experts = nn.ModuleList([RasphiBlockSparseTop2MLP(config, is_reasoning) for _ in range(self.num_experts)])
# Jitter parameters
self.router_jitter_noise = config.router_jitter_noise
self.input_jitter_noise = config.input_jitter_noise
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
batch_size, sequence_length, hidden_dim = hidden_states.shape
if self.training and self.input_jitter_noise > 0:
hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.input_jitter_noise, 1.0 + self.input_jitter_noise)
hidden_states = hidden_states.view(-1, hidden_dim)
router_logits = self.gate(hidden_states)
routing_weights, selected_experts = sparsemixer(
router_logits,
top_k=self.top_k,
jitter_eps=self.router_jitter_noise,
training=self.training,
)
final_hidden_states = torch.zeros(
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
)
# One hot encode the selected experts to create an expert mask
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
# Loop over all available experts in the model and perform the computation on each expert
for expert_idx in range(self.num_experts):
expert_layer = self.experts[expert_idx]
idx, top_x = torch.where(expert_mask[expert_idx])
if top_x.shape[0] == 0:
continue
# Index the correct hidden states and compute the expert hidden state for
# the current expert. We need to make sure to multiply the output hidden
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
current_state = hidden_states[None, top_x.tolist()].reshape(-1, hidden_dim)
current_hidden_states = expert_layer(current_state) * routing_weights[top_x.tolist(), idx.tolist(), None]
# Add the expert output to the final hidden states
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
return final_hidden_states, router_logits
class RasphiBlockSparseTop2MLP(nn.Module):
def __init__(self, config: RasphiConfig, is_reasoning: bool):
super().__init__()
self.ffn_dim = config.intermediate_size
self.hidden_dim = config.reasoning_hidden_size if is_reasoning else config.content_hidden_size
self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, hidden_states):
current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states)
current_hidden_states = self.w2(current_hidden_states)
return current_hidden_states
class RasphiPreTrainedModel(PreTrainedModel):
config_class = RasphiConfig
base_model_prefix = "rasphi"
supports_gradient_checkpointing = True
_no_split_modules = ["RasphiDecoderLayer"]
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
class RasphiForCausalLM(RasphiPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = RasphiModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.content_hidden_size, config.vocab_size, bias=config.lm_head_bias)
self.router_aux_loss_coef = config.router_aux_loss_coef
self.num_experts = config.num_content_experts # We use content experts for language modeling
self.num_experts_per_tok = config.num_experts_per_tok
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.get_input_embeddings()[1] # Return content embeddings
def set_input_embeddings(self, value):
self.model.set_input_embeddings((self.model.get_input_embeddings()[0], value))
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs):
token_type_ids = kwargs.get("token_type_ids", None)
# only last token for inputs_ids if past is defined in kwargs
if past_key_values:
input_ids = input_ids[:, -1].unsqueeze(-1)
if token_type_ids is not None:
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
attention_mask = kwargs.get("attention_mask", None)
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -1].unsqueeze(-1)
else:
position_ids = None
return {
"input_ids": input_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"position_ids": position_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
}
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_router_logits=output_router_logits,
return_dict=return_dict,
)
hidden_states = outputs[0]
content_hidden_states = hidden_states[1] # Use content stream for language modeling
logits = self.lm_head(content_hidden_states)
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
loss = loss_fct(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1))
aux_loss = None
if output_router_logits:
aux_loss = load_balancing_loss_func(
outputs.router_logits[1] if return_dict else outputs[-1][1], # Use content stream router logits
self.num_experts,
self.num_experts_per_tok,
attention_mask,
)
if labels is not None:
loss += self.router_aux_loss_coef * aux_loss
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return MoeCausalLMOutputWithPast(
loss=loss,
aux_loss=aux_loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
router_logits=outputs.router_logits,
)
@staticmethod
def _reorder_cache(past, beam_idx):
return tuple(
tuple(past_state.index_select(0, beam_idx) for past_state in layer_past)
for layer_past in past
)
#—Model > Rasphi changes start—#
class RasphiAttention(nn.Module):
def __init__(self, config: RasphiConfig, hidden_size: int, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.hidden_size = hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = hidden_size // self.num_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.is_causal = True
self.attention_dropout = config.attention_dropout
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
if getattr(config, 'rope_scaling', None) is None:
self.rotary_emb = RasphiMoERotaryEmbedding(
self.head_dim,
max_position_embeddings=self.max_position_embeddings,
base=self.rope_theta,
)
else:
scaling_type = self.config.rope_scaling["type"]
if scaling_type == "linear":
self.rotary_emb = LinearScalingRotaryEmbedding(
self.head_dim,
max_position_embeddings=self.max_position_embeddings,
scaling_factor=self.config.rope_scaling["factor"],
base=self.rope_theta,
)
elif scaling_type == "dynamic":
self.rotary_emb = DynamicNTKScalingRotaryEmbedding(
self.head_dim,
max_position_embeddings=self.max_position_embeddings,
scaling_factor=self.config.rope_scaling["factor"],
base=self.rope_theta,
)
else:
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
key_value_states: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
if key_value_states is None:
# self-attention
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
else:
# cross-attention
key_states = self.k_proj(key_value_states)
value_states = self.v_proj(key_value_states)
kv_len = key_value_states.size(1)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, -1, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, -1, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class mp(torch.autograd.Function):
@staticmethod
def forward(
ctx,
scores: torch.Tensor,
multiplier: torch.Tensor,
selected_experts: torch.Tensor,
masked_gates: torch.Tensor,
mask_for_one: torch.Tensor,
):
ctx.save_for_backward(multiplier, selected_experts, masked_gates)
return multiplier * mask_for_one
@staticmethod
def backward(
ctx,
grad_at_output: torch.Tensor,
):
multiplier, selected_experts, masked_gates = ctx.saved_tensors
grad_at_output = grad_at_output * multiplier
grad_at_scores_expaned = masked_gates * grad_at_output.mul(-1)
grad_at_scores_expaned.scatter_add_(
dim=-1,
index=selected_experts,
src=grad_at_output,
)
return (
grad_at_scores_expaned,
None,
None,
None,
None,
)
def sparsemixer(scores, top_k, jitter_eps, training):
assert top_k == 2
################ first expert ################
with torch.no_grad():
# compute mask for sparsity
mask_logits_threshold, max_ind = scores.max(dim=-1, keepdim=True)
factor = scores.abs().clamp(min=mask_logits_threshold)
mask_logits_threshold = (
(mask_logits_threshold - scores) / factor
) > (2 * jitter_eps)
# apply mask
masked_gates = scores.masked_fill(mask_logits_threshold, float('-inf'))
if training:
selected_experts = (
masked_gates - torch.empty_like(masked_gates, memory_format=torch.legacy_contiguous_format).exponential_().log()
).max(dim=-1)[1].unsqueeze(-1) # gumbel sampling, more robust than than the multinomial method
else:
selected_experts = max_ind
# compute scores for gradients
masked_gates = torch.softmax(masked_gates, dim=-1)
multiplier_o = masked_gates.gather(dim=-1, index=selected_experts)
if training:
# compute midpoint mask
max_scores, max_ind = masked_gates.max(dim=-1, keepdim=True)
mask_for_one = torch.logical_or(
selected_experts == max_ind,
torch.rand_like(max_scores) > 0.75 # Heun's third-order method: f(x) - f(0) = .25 f'(x) + .75 f'(x/3.)
)
# 1 -> 1.0 & 0 -> 1./3: lambda x: (x + 0.5) / 1.5
mask_for_one = torch.add(0.3333, mask_for_one, alpha=0.6667).type_as(masked_gates)
multiplier = mp.apply(
scores,
multiplier_o,
selected_experts,
masked_gates,
mask_for_one,
)
else:
multiplier = multiplier_o
# masked out first expert
masked_scores = torch.scatter(
scores,
-1,
selected_experts,
float('-inf'),
)
with torch.no_grad():
# compute mask for sparsity
mask_logits_threshold, max_ind = masked_scores.max(dim=-1, keepdim=True)
factor = scores.abs().clamp(min=mask_logits_threshold)
mask_logits_threshold = (
(mask_logits_threshold - scores) / factor
) > (2 * jitter_eps)
# apply mask
masked_gates_top2 = masked_scores.masked_fill(mask_logits_threshold, float('-inf'))
if training:
selected_experts_top2 = (
masked_gates_top2 - torch.empty_like(masked_gates_top2, memory_format=torch.legacy_contiguous_format).exponential_().log()
).max(dim=-1)[1].unsqueeze(-1) # gumbel sampling, more robust than than the multinomial method
else:
selected_experts_top2 = max_ind
# compute scores for gradients
masked_gates_top2 = torch.softmax(masked_gates_top2, dim=-1)
multiplier_top2_o = masked_gates_top2.gather(dim=-1, index=selected_experts_top2)
if training:
# compute midpoint mask
max_scores, max_ind = masked_gates_top2.max(dim=-1, keepdim=True)
mask_for_one_top2 = torch.logical_or(
selected_experts_top2 == max_ind,
torch.rand_like(max_scores).uniform_() > 0.75 # Heun's third-order method: f(x) - f(0) = .25 f'(x) + .75 f'(x/3.)
)
# 1 -> 1.0 & 0 -> 1./3: lambda x: (x + 0.5) / 1.5
mask_for_one_top2 = torch.add(0.3333, mask_for_one_top2, alpha=0.6667).type_as(masked_gates_top2)
multiplier_top2 = mp.apply(
scores,
multiplier_top2_o,
selected_experts_top2,
masked_gates_top2,
mask_for_one_top2,
)
else:
multiplier_top2 = multiplier_top2_o
multiplier = torch.concat((multiplier, multiplier_top2), dim=-1)
selected_experts = torch.concat((selected_experts, selected_experts_top2), dim=-1)
return (
multiplier,
selected_experts,
)
def load_balancing_loss_func(
gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2, attention_mask: Optional[torch.Tensor] = None
) -> float:
if gate_logits is None or not isinstance(gate_logits, tuple):
return 0
if isinstance(gate_logits, tuple):
compute_device = gate_logits[0].device
concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
routing_weights = F.softmax(concatenated_gate_logits, dim=-1)
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
expert_mask = F.one_hot(selected_experts, num_experts).permute(2, 1, 0)
if attention_mask is None:
# Compute the percentage of tokens routed to each experts
tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
# Compute the average probability of routing to these experts
router_prob_per_expert = torch.mean(routing_weights, dim=0)
else:
batch_size, sequence_length = attention_mask.shape
num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
# Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
expert_attention_mask = (
attention_mask[None, :, :, None, None]
.expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
.reshape(-1, top_k, num_experts)
.to(compute_device)
)
# Compute the percentage of tokens routed to each experts
tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
expert_attention_mask, dim=0
)
# Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
router_per_expert_attention_mask = (
attention_mask[None, :, :, None]
.expand((num_hidden_layers, batch_size, sequence_length, num_experts))
.reshape(-1, num_experts)
.to(compute_device)
)
# Compute the average probability of routing to these experts
router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
router_per_expert_attention_mask, dim=0
)
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
return overall_loss * num_experts
class RasphiMoERotaryEmbedding(nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
super().__init__()
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
self.register_buffer("inv_freq", inv_freq)
self.max_seq_len_cached = max_position_embeddings
t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
def forward(self, x, seq_len=None):
if seq_len > self.max_seq_len_cached:
self._set_cos_sin_cache(seq_len, device=x.device, dtype=x.dtype)
return (
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
)
class LinearScalingRotaryEmbedding(RasphiMoERotaryEmbedding):
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
self.scaling_factor = scaling_factor
super().__init__(dim, max_position_embeddings, base, device)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=dtype)
t = t / self.scaling_factor
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1).to(device)
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
class DynamicNTKScalingRotaryEmbedding(RasphiMoERotaryEmbedding):
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
self.scaling_factor = scaling_factor
super().__init__(dim, max_position_embeddings, base, device)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
if seq_len > self.max_seq_len_cached:
base = self.base * ((self.scaling_factor * seq_len / self.max_seq_len_cached) - (self.scaling_factor - 1)) ** (self.dim / (self.dim - 2))
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
self.register_buffer("inv_freq", inv_freq)
t = torch.arange(self.max_seq_len_cached, device=device, dtype=dtype)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1).to(device)
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
from transformers import AutoModelForCausalLM
AutoModelForCausalLM.register("rasphi", RasphiForCausalLM)
|