File size: 4,236 Bytes
604bc1b 5b6e08a 604bc1b 5b6e08a 604bc1b beec57d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
---
base_model: unsloth/phi-4-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- gguf
license: apache-2.0
language:
- en
datasets:
- bespokelabs/Bespoke-Stratos-17k
- bespokelabs/Bespoke-Stratos-35k
- NovaSky-AI/Sky-T1_data_17k
- Quazim0t0/BenfordsLawReasoningJSON
- open-thoughts/OpenThoughts-114k
---
# Uploaded model
- **Developed by:** Quazim0t0
- **Finetuned from model :** unsloth/phi-4-unsloth-bnb-4bit
- **GGUF**
- **Trained for 8 Hours on A800 with the Bespoke Stratos 17k Dataset.**
- **Trained for 6 Hours on A800 with the Bespoke Stratos 35k Dataset.**
- **Trained for 2 Hours on A800 with the Benford's Law Reasoning Small 430 Row Dataset, ensuring no overfitting.**
- **Trained for 4 Hours on A800 with the Sky-T1_data_17k Dataset**
- **Trained for 2 Hours on A800 with the Openthoughts 114k Dataset.**
- **15$ Training...I'm actually amazed by the results.**
If using this model for Open WebUI here is a simple function to organize the models responses: https://openwebui.com/f/quaz93/phi4_turn_r1_distill_thought_function_v1
# Phi4 Turn R1Distill LoRA Adapters
## Overview
These **LoRA adapters** were trained using diverse **reasoning datasets** that incorporate structured **Thought** and **Solution** responses to enhance logical inference. This project was designed to **test the R1 dataset** on **Phi-4**, aiming to create a **lightweight, fast, and efficient reasoning model**.
All adapters were fine-tuned using an **NVIDIA A800 GPU**, ensuring high performance and compatibility for continued training, merging, or direct deployment.
As part of an open-source initiative, all resources are made **publicly available** for unrestricted research and development.
---
## LoRA Adapters
Below are the currently available LoRA fine-tuned adapters (**as of January 30, 2025**):
- [Phi4.Turn.R1Distill-Lora1](https://huggingface.co./Quazim0t0/Phi4.Turn.R1Distill-Lora1)
- [Phi4.Turn.R1Distill-Lora2](https://huggingface.co./Quazim0t0/Phi4.Turn.R1Distill-Lora2)
- [Phi4.Turn.R1Distill-Lora3](https://huggingface.co./Quazim0t0/Phi4.Turn.R1Distill-Lora3)
- [Phi4.Turn.R1Distill-Lora4](https://huggingface.co./Quazim0t0/Phi4.Turn.R1Distill-Lora4)
- [Phi4.Turn.R1Distill-Lora5](https://huggingface.co./Quazim0t0/Phi4.Turn.R1Distill-Lora5)
- [Phi4.Turn.R1Distill-Lora6](https://huggingface.co./Quazim0t0/Phi4.Turn.R1Distill-Lora6)
- [Phi4.Turn.R1Distill-Lora7](https://huggingface.co./Quazim0t0/Phi4.Turn.R1Distill-Lora7)
- [Phi4.Turn.R1Distill-Lora8](https://huggingface.co./Quazim0t0/Phi4.Turn.R1Distill-Lora8)
---
## GGUF Full & Quantized Models
To facilitate broader testing and real-world inference, **GGUF Full and Quantized versions** have been provided for evaluation on **Open WebUI** and other LLM interfaces.
### **Version 1**
- [Phi4.Turn.R1Distill.Q8_0](https://huggingface.co./Quazim0t0/Phi4.Turn.R1Distill.Q8_0)
- [Phi4.Turn.R1Distill.Q4_k](https://huggingface.co./Quazim0t0/Phi4.Turn.R1Distill.Q4_k)
- [Phi4.Turn.R1Distill.16bit](https://huggingface.co./Quazim0t0/Phi4.Turn.R1Distill.16bit)
### **Version 1.1**
- [Phi4.Turn.R1Distill_v1.1_Q4_k](https://huggingface.co./Quazim0t0/Phi4.Turn.R1Distill_v1.1_Q4_k)
### **Version 1.2**
- [Phi4.Turn.R1Distill_v1.2_Q4_k](https://huggingface.co./Quazim0t0/Phi4.Turn.R1Distill_v1.2_Q4_k)
### **Version 1.3**
- [Phi4.Turn.R1Distill_v1.3_Q4_k-GGUF](https://huggingface.co./Quazim0t0/Phi4.Turn.R1Distill_v1.3_Q4_k-GGUF)
### **Version 1.4**
- [Phi4.Turn.R1Distill_v1.4_Q4_k-GGUF](https://huggingface.co./Quazim0t0/Phi4.Turn.R1Distill_v1.4_Q4_k-GGUF)
### **Version 1.5**
- [Phi4.Turn.R1Distill_v1.5_Q4_k-GGUF](https://huggingface.co./Quazim0t0/Phi4.Turn.R1Distill_v1.5_Q4_k-GGUF)
---
## Usage
### **Loading LoRA Adapters with `transformers` and `peft`**
To load and apply the LoRA adapters on Phi-4, use the following approach:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
base_model = "microsoft/Phi-4"
lora_adapter = "Quazim0t0/Phi4.Turn.R1Distill-Lora1"
tokenizer = AutoTokenizer.from_pretrained(base_model)
model = AutoModelForCausalLM.from_pretrained(base_model)
model = PeftModel.from_pretrained(model, lora_adapter)
model.eval()
|