aashish1904
commited on
Commit
•
c2b956e
1
Parent(s):
e5aa852
Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
|
4 |
+
datasets:
|
5 |
+
- homebrewltd/instruction-speech-whispervq-v2
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
license: apache-2.0
|
9 |
+
tags:
|
10 |
+
- sound language model
|
11 |
+
|
12 |
+
---
|
13 |
+
|
14 |
+
![](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)
|
15 |
+
|
16 |
+
# QuantFactory/llama3.1-s-instruct-v0.2-GGUF
|
17 |
+
This is quantized version of [homebrewltd/llama3.1-s-instruct-v0.2](https://huggingface.co/homebrewltd/llama3.1-s-instruct-v0.2) created using llama.cpp
|
18 |
+
|
19 |
+
# Original Model Card
|
20 |
+
|
21 |
+
|
22 |
+
## Model Details
|
23 |
+
|
24 |
+
We have developed and released the family [llama3s](https://huggingface.co/collections/homebrew-research/llama3-s-669df2139f0576abc6eb7405). This family is natively understanding audio and text input.
|
25 |
+
|
26 |
+
We expand the Semantic tokens experiment with WhisperVQ as a tokenizer for audio files from [homebrewltd/llama3.1-s-base-v0.2](https://huggingface.co/homebrewltd/llama3.1-s-base-v0.2) with nearly 1B tokens from [Instruction Speech WhisperVQ v2](https://huggingface.co/datasets/homebrewltd/instruction-speech-whispervq-v2) dataset.
|
27 |
+
|
28 |
+
**Model developers** Homebrew Research.
|
29 |
+
|
30 |
+
**Input** Text and sound.
|
31 |
+
|
32 |
+
**Output** Text.
|
33 |
+
|
34 |
+
**Model Architecture** Llama-3.
|
35 |
+
|
36 |
+
**Language(s):** English.
|
37 |
+
|
38 |
+
## Intended Use
|
39 |
+
|
40 |
+
**Intended Use Cases** This family is primarily intended for research applications. This version aims to further improve the LLM on sound understanding capabilities.
|
41 |
+
|
42 |
+
**Out-of-scope** The use of llama3-s in any manner that violates applicable laws or regulations is strictly prohibited.
|
43 |
+
|
44 |
+
## How to Get Started with the Model
|
45 |
+
|
46 |
+
Try this model using [Google Colab Notebook](https://colab.research.google.com/drive/18IiwN0AzBZaox5o0iidXqWD1xKq11XbZ?usp=sharing).
|
47 |
+
|
48 |
+
First, we need to convert the audio file to sound tokens
|
49 |
+
|
50 |
+
```python
|
51 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
52 |
+
if not os.path.exists("whisper-vq-stoks-medium-en+pl-fixed.model"):
|
53 |
+
hf_hub_download(
|
54 |
+
repo_id="jan-hq/WhisperVQ",
|
55 |
+
filename="whisper-vq-stoks-medium-en+pl-fixed.model",
|
56 |
+
local_dir=".",
|
57 |
+
)
|
58 |
+
vq_model = RQBottleneckTransformer.load_model(
|
59 |
+
"whisper-vq-stoks-medium-en+pl-fixed.model"
|
60 |
+
).to(device)
|
61 |
+
def audio_to_sound_tokens(audio_path, target_bandwidth=1.5, device=device):
|
62 |
+
vq_model.ensure_whisper(device)
|
63 |
+
|
64 |
+
wav, sr = torchaudio.load(audio_path)
|
65 |
+
if sr != 16000:
|
66 |
+
wav = torchaudio.functional.resample(wav, sr, 16000)
|
67 |
+
with torch.no_grad():
|
68 |
+
codes = vq_model.encode_audio(wav.to(device))
|
69 |
+
codes = codes[0].cpu().tolist()
|
70 |
+
|
71 |
+
result = ''.join(f'<|sound_{num:04d}|>' for num in codes)
|
72 |
+
return f'<|sound_start|>{result}<|sound_end|>'
|
73 |
+
|
74 |
+
def audio_to_sound_tokens_transcript(audio_path, target_bandwidth=1.5, device=device):
|
75 |
+
vq_model.ensure_whisper(device)
|
76 |
+
|
77 |
+
wav, sr = torchaudio.load(audio_path)
|
78 |
+
if sr != 16000:
|
79 |
+
wav = torchaudio.functional.resample(wav, sr, 16000)
|
80 |
+
with torch.no_grad():
|
81 |
+
codes = vq_model.encode_audio(wav.to(device))
|
82 |
+
codes = codes[0].cpu().tolist()
|
83 |
+
|
84 |
+
result = ''.join(f'<|sound_{num:04d}|>' for num in codes)
|
85 |
+
return f'<|reserved_special_token_69|><|sound_start|>{result}<|sound_end|>'
|
86 |
+
```
|
87 |
+
|
88 |
+
Then, we can inference the model the same as any other LLM.
|
89 |
+
|
90 |
+
```python
|
91 |
+
def setup_pipeline(model_path, use_4bit=False, use_8bit=False):
|
92 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
93 |
+
|
94 |
+
model_kwargs = {"device_map": "auto"}
|
95 |
+
|
96 |
+
if use_4bit:
|
97 |
+
model_kwargs["quantization_config"] = BitsAndBytesConfig(
|
98 |
+
load_in_4bit=True,
|
99 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
100 |
+
bnb_4bit_use_double_quant=True,
|
101 |
+
bnb_4bit_quant_type="nf4",
|
102 |
+
)
|
103 |
+
elif use_8bit:
|
104 |
+
model_kwargs["quantization_config"] = BitsAndBytesConfig(
|
105 |
+
load_in_8bit=True,
|
106 |
+
bnb_8bit_compute_dtype=torch.bfloat16,
|
107 |
+
bnb_8bit_use_double_quant=True,
|
108 |
+
)
|
109 |
+
else:
|
110 |
+
model_kwargs["torch_dtype"] = torch.bfloat16
|
111 |
+
|
112 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, **model_kwargs)
|
113 |
+
|
114 |
+
return pipeline("text-generation", model=model, tokenizer=tokenizer)
|
115 |
+
|
116 |
+
def generate_text(pipe, messages, max_new_tokens=64, temperature=0.0, do_sample=False):
|
117 |
+
generation_args = {
|
118 |
+
"max_new_tokens": max_new_tokens,
|
119 |
+
"return_full_text": False,
|
120 |
+
"temperature": temperature,
|
121 |
+
"do_sample": do_sample,
|
122 |
+
}
|
123 |
+
|
124 |
+
output = pipe(messages, **generation_args)
|
125 |
+
return output[0]['generated_text']
|
126 |
+
|
127 |
+
# Usage
|
128 |
+
llm_path = "homebrewltd/llama3.1-s-instruct-v0.2"
|
129 |
+
pipe = setup_pipeline(llm_path, use_8bit=True)
|
130 |
+
```
|
131 |
+
|
132 |
+
## Training process
|
133 |
+
**Training Metrics Image**: Below is a snapshot of the training loss curve visualized.
|
134 |
+
|
135 |
+
![training_](https://cdn-uploads.huggingface.co/production/uploads/65713d70f56f9538679e5a56/pQ8y9GoSvtv42MgkKRDt0.png)
|
136 |
+
|
137 |
+
### Hardware
|
138 |
+
|
139 |
+
**GPU Configuration**: Cluster of 8x NVIDIA H100-SXM-80GB.
|
140 |
+
**GPU Usage**:
|
141 |
+
- **Continual Training**: 6 hours.
|
142 |
+
|
143 |
+
### Training Arguments
|
144 |
+
|
145 |
+
We utilize [torchtune](https://github.com/pytorch/torchtune) library for the latest FSDP2 training code implementation.
|
146 |
+
|
147 |
+
| Parameter | Continual Training |
|
148 |
+
|----------------------------|-------------------------|
|
149 |
+
| **Epoch** | 1 |
|
150 |
+
| **Global batch size** | 128 |
|
151 |
+
| **Learning Rate** | 0.5e-4 |
|
152 |
+
| **Learning Scheduler** | Cosine with warmup |
|
153 |
+
| **Optimizer** | Adam torch fused |
|
154 |
+
| **Warmup Ratio** | 0.01 |
|
155 |
+
| **Weight Decay** | 0.005 |
|
156 |
+
| **Max Sequence Length** | 512 |
|
157 |
+
|
158 |
+
|
159 |
+
## Examples
|
160 |
+
|
161 |
+
1. Good example:
|
162 |
+
|
163 |
+
<details>
|
164 |
+
<summary>Click to toggle Example 1</summary>
|
165 |
+
|
166 |
+
```
|
167 |
+
|
168 |
+
```
|
169 |
+
</details>
|
170 |
+
|
171 |
+
<details>
|
172 |
+
<summary>Click to toggle Example 2</summary>
|
173 |
+
|
174 |
+
```
|
175 |
+
|
176 |
+
```
|
177 |
+
</details>
|
178 |
+
|
179 |
+
|
180 |
+
2. Misunderstanding example:
|
181 |
+
|
182 |
+
<details>
|
183 |
+
<summary>Click to toggle Example 3</summary>
|
184 |
+
|
185 |
+
```
|
186 |
+
|
187 |
+
```
|
188 |
+
</details>
|
189 |
+
|
190 |
+
3. Off-tracked example:
|
191 |
+
|
192 |
+
<details>
|
193 |
+
<summary>Click to toggle Example 4</summary>
|
194 |
+
|
195 |
+
```
|
196 |
+
|
197 |
+
```
|
198 |
+
</details>
|
199 |
+
|
200 |
+
|
201 |
+
## Citation Information
|
202 |
+
|
203 |
+
**BibTeX:**
|
204 |
+
|
205 |
+
```
|
206 |
+
@article{Llama3-S: Sound Instruction Language Model 2024,
|
207 |
+
title={Llama3-S},
|
208 |
+
author={Homebrew Research},
|
209 |
+
year=2024,
|
210 |
+
month=August},
|
211 |
+
url={https://huggingface.co/homebrewltd/llama3.1-s-2024-08-20}
|
212 |
+
```
|
213 |
+
|
214 |
+
## Acknowledgement
|
215 |
+
|
216 |
+
- **[WhisperSpeech](https://github.com/collabora/WhisperSpeech)**
|
217 |
+
|
218 |
+
- **[Meta-Llama-3.1-8B-Instruct ](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct)**
|