Text Generation
GGUF
Inference Endpoints
aashish1904 commited on
Commit
02bce61
1 Parent(s): 67be2d5

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +569 -0
README.md ADDED
@@ -0,0 +1,569 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+
4
+ license: bigscience-bloom-rail-1.0
5
+ language:
6
+ - ak
7
+ - ar
8
+ - as
9
+ - bm
10
+ - bn
11
+ - ca
12
+ - code
13
+ - en
14
+ - es
15
+ - eu
16
+ - fon
17
+ - fr
18
+ - gu
19
+ - hi
20
+ - id
21
+ - ig
22
+ - ki
23
+ - kn
24
+ - lg
25
+ - ln
26
+ - ml
27
+ - mr
28
+ - ne
29
+ - nso
30
+ - ny
31
+ - or
32
+ - pa
33
+ - pt
34
+ - rn
35
+ - rw
36
+ - sn
37
+ - st
38
+ - sw
39
+ - ta
40
+ - te
41
+ - tn
42
+ - ts
43
+ - tum
44
+ - tw
45
+ - ur
46
+ - vi
47
+ - wo
48
+ - xh
49
+ - yo
50
+ - zh
51
+ - zhs
52
+ - zht
53
+ - zu
54
+ pipeline_tag: text-generation
55
+
56
+ ---
57
+
58
+ [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
59
+
60
+
61
+ # QuantFactory/bloom-7b1-GGUF
62
+ This is quantized version of [bigscience/bloom-7b1](https://huggingface.co/bigscience/bloom-7b1) created using llama.cpp
63
+
64
+ # Original Model Card
65
+
66
+
67
+ <h1 style='text-align: center '>BLOOM LM</h1>
68
+ <h2 style='text-align: center '><em>BigScience Large Open-science Open-access Multilingual Language Model</em> </h2>
69
+ <h3 style='text-align: center '>Model Card</h3>
70
+ <img src="https://aeiljuispo.cloudimg.io/v7/https://cdn-uploads.huggingface.co/production/uploads/1634806038075-5df7e9e5da6d0311fd3d53f9.png" alt="BigScience Logo" width="800" style="margin-left:auto; margin-right:auto; display:block"/>
71
+
72
+
73
+ Version 1.0 / 26.May.2022
74
+
75
+ ## Table of Contents
76
+ 1. [Model Details](#model-details)
77
+ 2. [Uses](#uses)
78
+ 3. [Training Data](#training-data)
79
+ 4. [Risks and Limitations](#risks-and-limitations)
80
+ 5. [Evaluation](#evaluation)
81
+ 6. [Recommendations](#recommendations)
82
+ 7. [Glossary and Calculations](#glossary-and-calculations)
83
+ 8. [More Information](#more-information)
84
+ 9. [Model Card Authors](#model-card-authors)
85
+
86
+ ## Model Details
87
+
88
+ ### Basics
89
+ *This section provides information for anyone who wants to know about the model.*
90
+
91
+ <details>
92
+ <summary>Click to expand</summary> <br/>
93
+
94
+ **Developed by:** BigScience ([website](https://bigscience.huggingface.co))
95
+
96
+ * All collaborators are either volunteers or have an agreement with their employer. *(Further breakdown of participants forthcoming.)*
97
+
98
+ **Model Type:** Transformer-based Language Model
99
+
100
+ **Version:** 1.0.0
101
+
102
+ **Languages:** Multiple; see [training data](#training-data)
103
+
104
+ **License:** RAIL License v1.0 ([link](https://huggingface.co/spaces/bigscience/license))
105
+
106
+ **Release Date Estimate:** Monday, 11.July.2022
107
+
108
+ **Send Questions to:** [email protected]
109
+
110
+ **Cite as:** BigScience, _BigScience Language Open-science Open-access Multilingual (BLOOM) Language Model_. International, May 2021-May 2022
111
+
112
+ **Funded by:**
113
+
114
+ * The French government.
115
+
116
+ * Hugging Face ([website](https://huggingface.co)).
117
+
118
+ * Organizations of contributors. *(Further breakdown of organizations forthcoming.)*
119
+
120
+ </details>
121
+
122
+ ### Technical Specifications
123
+ *This section provides information for people who work on model development.*
124
+
125
+ <details>
126
+ <summary>Click to expand</summary><br/>
127
+
128
+ Please see [the BLOOM training README](https://github.com/bigscience-workshop/bigscience/tree/master/train/tr11-176B-ml#readme) for full details on replicating training.
129
+
130
+ **Model Architecture:** Modified from Megatron-LM GPT2 (see [paper](https://arxiv.org/abs/1909.08053), [BLOOM Megatron code](https://github.com/bigscience-workshop/Megatron-DeepSpeed)):
131
+
132
+ * Decoder-only architecture
133
+
134
+ * Layer normalization applied to word embeddings layer (`StableEmbedding`; see [code](https://github.com/facebookresearch/bitsandbytes), [paper](https://arxiv.org/pdf/2110.02861.pdf))
135
+
136
+ * ALiBI positional encodings (see [paper](https://arxiv.org/pdf/2108.12409.pdf)), with GeLU activation functions
137
+
138
+ * 7,069,016,064 parameters:
139
+
140
+ * 1,027,604,480 embedding parameters
141
+
142
+ * 30 layers, 32 attention heads
143
+
144
+ * Hidden layers are 4096-dimensional
145
+
146
+ * Sequence length of 2048 tokens used (see [BLOOM tokenizer](https://huggingface.co/bigscience/tokenizer), [tokenizer description](#tokenization))
147
+
148
+ **Objective Function:** Cross Entropy with mean reduction (see [API documentation](https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html#torch.nn.CrossEntropyLoss)).
149
+
150
+ **Compute infrastructure:** Jean Zay Public Supercomputer, provided by the French government (see [announcement](https://www.enseignementsup-recherche.gouv.fr/fr/signature-du-marche-d-acquisition-de-l-un-des-supercalculateurs-les-plus-puissants-d-europe-46733)).
151
+
152
+ * Hardware: 384 A100 80GB GPUs (48 nodes):
153
+
154
+ * Additional 32 A100 80GB GPUs (4 nodes) in reserve
155
+
156
+ * 8 GPUs per node Using NVLink 4 inter-gpu connects, 4 OmniPath links
157
+
158
+ * CPU: AMD
159
+
160
+ * CPU memory: 512GB per node
161
+
162
+ * GPU memory: 640GB per node
163
+
164
+ * Inter-node connect: Omni-Path Architecture (OPA)
165
+
166
+ * NCCL-communications network: a fully dedicated subnet
167
+
168
+ * Disc IO network: shared network with other types of nodes
169
+
170
+ * Software:
171
+
172
+ * Megatron-DeepSpeed ([Github link](https://github.com/bigscience-workshop/Megatron-DeepSpeed))
173
+
174
+ * DeepSpeed ([Github link](https://github.com/microsoft/DeepSpeed))
175
+
176
+ * PyTorch (pytorch-1.11 w/ CUDA-11.5; see [Github link](https://github.com/pytorch/pytorch))
177
+
178
+ * apex ([Github link](https://github.com/NVIDIA/apex))
179
+
180
+
181
+ #### **Training**
182
+
183
+
184
+ Training logs: [Tensorboard link](https://huggingface.co/tensorboard/bigscience/tr11c-2B5-logs)
185
+
186
+ - Number of epochs: 1 (*current target*)
187
+
188
+ - Dates:
189
+
190
+ - Started 11th March, 2022 11:42am PST
191
+
192
+ - Ended 5th July, 2022
193
+
194
+ - Estimated cost of training: Equivalent of $2-5M in cloud computing (including preliminary experiments)
195
+
196
+ - Server training location: Île-de-France, France
197
+
198
+ #### **Tokenization**
199
+
200
+ The BLOOM tokenizer ([link](https://huggingface.co/bigscience/tokenizer)) is a learned subword tokenizer trained using:
201
+
202
+ - A byte-level Byte Pair Encoding (BPE) algorithm
203
+
204
+ - A simple pre-tokenization rule, no normalization
205
+
206
+ - A vocabulary size of 250,680
207
+
208
+ It was trained on a subset of a preliminary version of the corpus using alpha-weighting per language.
209
+
210
+ </details>
211
+
212
+
213
+ ### Environmental Impact
214
+
215
+ <details>
216
+ <summary>Click to expand</summary><br/>
217
+
218
+ The training supercomputer, Jean Zay ([website](http://www.idris.fr/eng/jean-zay/jean-zay-presentation-eng.html)), uses mostly nuclear energy. The heat generated by it is reused for heating campus housing.
219
+
220
+ **Estimated carbon emissions:** *(Forthcoming upon completion of training.)*
221
+
222
+ **Estimated electricity usage:** *(Forthcoming upon completion of training.)*
223
+
224
+
225
+ </details>
226
+ <p>&nbsp;</p>
227
+
228
+ ## Uses
229
+
230
+ *This section addresses questions around how the model is intended to be used, discusses the foreseeable users of the model (including those affected by the model), and describes uses that are considered out of scope or misuse of the model.
231
+ It provides information for anyone considering using the model or who is affected by the model.*
232
+
233
+
234
+ <details>
235
+ <summary>Click to expand</summary><br/>
236
+
237
+ ### Intended Use
238
+
239
+ This model is being created in order to enable public research on large language models (LLMs). LLMs are intended to be used for language generation or as a pretrained base model that can be further fine-tuned for specific tasks. Use cases below are not exhaustive.
240
+
241
+ #### **Direct Use**
242
+
243
+ - Text generation
244
+
245
+ - Exploring characteristics of language generated by a language model
246
+
247
+ - Examples: Cloze tests, counterfactuals, generations with reframings
248
+
249
+ #### **Downstream Use**
250
+
251
+ - Tasks that leverage language models include: Information Extraction, Question Answering, Summarization
252
+
253
+ ### Misuse and Out-of-scope Use
254
+ *This section addresses what users ought not do with the model.*
255
+
256
+ See the [BLOOM License](https://huggingface.co/spaces/bigscience/license), Attachment A, for detailed usage restrictions. The below list is non-exhaustive, but lists some easily foreseeable problematic use cases.
257
+
258
+ #### **Out-of-scope Uses**
259
+
260
+ Using the model in [high-stakes](#high-stakes) settings is out of scope for this model.  The model is not designed for [critical decisions](#critical-decisions) nor uses with any material consequences on an individual's livelihood or wellbeing. The model outputs content that appears factual but is not correct.
261
+
262
+ ##### Out-of-scope Uses Include:
263
+
264
+ - Usage in biomedical domains, political and legal domains, or finance domains
265
+
266
+ - Usage for evaluating or scoring individuals, such as for employment, education, or credit
267
+
268
+ - Applying the model for critical automatic decisions, generating factual content, creating reliable summaries, or generating predictions that must be correct
269
+
270
+ #### **Misuse**
271
+
272
+ Intentionally using the model for harm, violating [human rights](#human-rights), or other kinds of malicious activities, is a misuse of this model. This includes:
273
+
274
+ - Spam generation
275
+
276
+ - Disinformation and influence operations
277
+
278
+ - Disparagement and defamation
279
+
280
+ - Harassment and abuse
281
+
282
+ - [Deception](#deception)
283
+
284
+ - Unconsented impersonation and imitation
285
+
286
+ - Unconsented surveillance
287
+
288
+ - Generating content without attribution to the model, as specified in the [RAIL License, Use Restrictions](https://huggingface.co/spaces/bigscience/license)
289
+
290
+ ### Intended Users
291
+
292
+ #### **Direct Users**
293
+
294
+ - General Public
295
+
296
+ - Researchers
297
+
298
+ - Students
299
+
300
+ - Educators
301
+
302
+ - Engineers/developers
303
+
304
+ - Non-commercial entities
305
+
306
+ - Community advocates, including human and civil rights groups
307
+
308
+ #### Indirect Users
309
+
310
+ - Users of derivatives created by Direct Users, such as those using software with an [intended use](#intended-use)
311
+
312
+ - Users of [Derivatives of the Model, as described in the License](https://huggingface.co/spaces/bigscience/license)
313
+
314
+ #### Others Affected (Parties Prenantes)
315
+
316
+ - People and groups referred to by the LLM
317
+
318
+ - People and groups exposed to outputs of, or decisions based on, the LLM
319
+
320
+ - People and groups whose original work is included in the LLM
321
+
322
+ </details>
323
+ <p>&nbsp;</p>
324
+
325
+ ## Training Data
326
+ *This section provides a high-level overview of the training data. It is relevant for anyone who wants to know the basics of what the model is learning.*
327
+
328
+
329
+ <details>
330
+ <summary>Click to expand</summary><br/>
331
+
332
+ Details for each dataset are provided in individual [Data Cards](https://huggingface.co/spaces/bigscience/BigScienceCorpus).
333
+
334
+ Training data includes:
335
+
336
+ - 45 natural languages
337
+
338
+ - 12 programming languages
339
+
340
+ - In 1.5TB of pre-processed text, converted into 350B unique tokens (see [the tokenizer section](#tokenization) for more.)
341
+
342
+
343
+ #### **Languages**
344
+
345
+ The pie chart shows the distribution of languages in training data.
346
+
347
+ ![pie chart showing the distribution of languages in training data](https://github.com/bigscience-workshop/model_card/blob/main/assets/data/pie_chart.svg?raw=true)
348
+
349
+
350
+ The following table shows the further distribution of Niger-Congo and Indic languages in the training data.
351
+ <details>
352
+ <summary>Click to expand</summary><br/>
353
+
354
+ | Niger Congo | Percentage | | Indic | Percentage |
355
+ |----------------|------------ |------ |-----------|------------|
356
+ | Chi Tumbuka | 0.00002 | | Assamese | 0.01 |
357
+ | Kikuyu | 0.00004 | | Odia | 0.04 |
358
+ | Bambara | 0.00004 | | Gujarati | 0.04 |
359
+ | Akan | 0.00007 | | Marathi | 0.05 |
360
+ | Xitsonga | 0.00007 | | Punjabi | 0.05 |
361
+ | Sesotho | 0.00007 | | Kannada | 0.06 |
362
+ | Chi Chewa | 0.0001 | | Nepali | 0.07 |
363
+ | Setswana | 0.0002 | | Telugu | 0.09 |
364
+ | Northern Sotho | 0.0002 | | Malayalam | 0.10 |
365
+ | Fon | 0.0002 | | Urdu | 0.10 |
366
+ | Kirundi | 0.0003 | | Tamil | 0.20 |
367
+ | Wolof | 0.0004 | | Bengali | 0.50 |
368
+ | Kuganda | 0.0004 | | Hindi | 0.70 |
369
+ | Chi Shona | 0.001 |
370
+ | Isi Zulu | 0.001 |
371
+ | Igbo | 0.001 |
372
+ | Xhosa | 0.001 |
373
+ | Kinyarwanda | 0.003 |
374
+ | Yoruba | 0.006 |
375
+ | Swahili | 0.02 |
376
+ </details>
377
+
378
+ The following table shows the distribution of programming languages.
379
+ <details>
380
+ <summary>Click to expand</summary><br/>
381
+
382
+ | Extension | Language | Number of files |
383
+ |----------------|------------|-----------------|
384
+ | java | Java | 5,407,724 |
385
+ | php | PHP | 4,942,186 |
386
+ | cpp | C++ | 2,503,930 |
387
+ | py | Python | 2,435,072 |
388
+ | js | JavaScript | 1,905,518 |
389
+ | cs | C# | 1,577,347 |
390
+ | rb | Ruby | 6,78,413 |
391
+ | cc | C++ | 443,054 |
392
+ | hpp | C++ | 391,048 |
393
+ | lua | Lua | 352,317 |
394
+ | go | GO | 227,763 |
395
+ | ts | TypeScript | 195,254 |
396
+ | C | C | 134,537 |
397
+ | scala | Scala | 92,052 |
398
+ | hh | C++ | 67,161 |
399
+ | H | C++ | 55,899 |
400
+ | tsx | TypeScript | 33,107 |
401
+ | rs | Rust | 29,693 |
402
+ | phpt | PHP | 9,702 |
403
+ | c++ | C++ | 1,342 |
404
+ | h++ | C++ | 791 |
405
+ | php3 | PHP | 540 |
406
+ | phps | PHP | 270 |
407
+ | php5 | PHP | 166 |
408
+ | php4 | PHP | 29 |
409
+
410
+ </details>
411
+ </details>
412
+ <p>&nbsp;</p>
413
+
414
+ ## Risks and Limitations
415
+ *This section identifies foreseeable harms and misunderstandings.*
416
+
417
+ <details>
418
+ <summary>Click to expand</summary><br/>
419
+
420
+ Model may:
421
+
422
+ - Overrepresent some viewpoints and underrepresent others
423
+
424
+ - Contain stereotypes
425
+
426
+ - Contain [personal information](#personal-data-and-information)
427
+
428
+ - Generate:
429
+
430
+ - Hateful, abusive, or violent language
431
+
432
+ - Discriminatory or prejudicial language
433
+
434
+ - Content that may not be appropriate for all settings, including sexual content
435
+
436
+ - Make errors, including producing incorrect information as if it were factual
437
+
438
+ - Generate irrelevant or repetitive outputs
439
+ </details>
440
+ <p>&nbsp;</p>
441
+
442
+ ## Evaluation
443
+ *This section describes the evaluation protocols and provides the results.*
444
+
445
+ <details>
446
+ <summary>Click to expand</summary><br/>
447
+
448
+ ### Metrics
449
+ *This section describes the different ways performance is calculated and why.*
450
+
451
+ Includes:
452
+
453
+ | Metric | Why chosen |
454
+ |--------------------|--------------------------------------------------------------------|
455
+ | [Perplexity](#perplexity) | Standard metric for quantifying model improvements during training |
456
+ | Cross Entropy [Loss](#loss) | Standard objective for language models. |
457
+
458
+ And multiple different metrics for specific tasks. _(More evaluation metrics forthcoming upon completion of evaluation protocol.)_
459
+
460
+ ### Factors
461
+ *This section lists some different aspects of BLOOM models. Its focus is on those aspects that are likely to give rise to high variance in model behavior.*
462
+
463
+ - Language, such as English or Yoruba
464
+
465
+ - Domain, such as newswire or stories
466
+
467
+ - Demographic characteristics, such as gender or nationality
468
+
469
+ ### Results
470
+ *Results are based on the [Factors](#factors) and [Metrics](#metrics).*
471
+
472
+ **Train-time Evaluation:**
473
+
474
+ As of 25.May.2022, 15:00 PST:
475
+
476
+ - Training Loss: 2.3
477
+
478
+ - Validation Loss: 2.9
479
+
480
+ - Perplexity: 16
481
+
482
+ </details>
483
+ <p>&nbsp;</p>
484
+
485
+ ## Recommendations
486
+
487
+ *This section provides information on warnings and potential mitigations.*
488
+
489
+
490
+ <details>
491
+ <summary>Click to expand</summary><br/>
492
+
493
+ - Indirect users should be made aware when the content they're working with is created by the LLM.
494
+
495
+ - Users should be aware of [Risks and Limitations](#risks-and-limitations), and include an appropriate age disclaimer or blocking interface as necessary.
496
+
497
+ - Models pretrained with the LLM should include an updated Model Card.
498
+
499
+ - Users of the model should provide mechanisms for those affected to provide feedback, such as an email address for comments.
500
+
501
+ </details>
502
+ <p>&nbsp;</p>
503
+
504
+ ## Glossary and Calculations
505
+
506
+ *This section defines common terms and how metrics are calculated.*
507
+
508
+
509
+
510
+ <details>
511
+ <summary>Click to expand</summary><br/>
512
+
513
+ - <a name="loss">**Loss:**</a> A calculation of the difference between what the model has learned and what the data shows ("groundtruth"). The lower the loss, the better. The training process aims to minimize the loss.
514
+
515
+ - <a name="perplexity">**Perplexity:**</a> This is based on what the model estimates the probability of new data is. The lower the perplexity, the better. If the model is 100% correct at predicting the next token it will see, then the perplexity is 1. Mathematically this is calculated using entropy.
516
+
517
+ - <a name="high-stakes">**High-stakes settings:**</a> Such as those identified as "high-risk AI systems" and "unacceptable risk AI systems" in the European Union's proposed [Artificial Intelligence (AI) Act](https://artificialintelligenceact.eu/annexes/).
518
+
519
+ - <a name="critical-decisions">**Critical decisions:**</a> Such as those defined in [the United States' proposed Algorithmic Accountability Act](https://www.congress.gov/117/bills/s3572/BILLS-117s3572is.pdf).
520
+
521
+ - <a name="human-rights">**Human rights:**</a> Includes those rights defined in the [Universal Declaration of Human Rights](https://www.un.org/sites/un2.un.org/files/2021/03/udhr.pdf).
522
+
523
+ - <a name="personal-data-and-information">**Personal Data and Personal Information:**</a> Personal data and information is defined in multiple data protection regulations, such as "[personal data](https://gdpr-info.eu/issues/personal-data/)" in the [European Union's General Data Protection Regulation](https://gdpr-info.eu); and "personal information" in the Republic of South Africa's [Protection of Personal Information Act](https://www.gov.za/sites/default/files/gcis_document/201409/3706726-11act4of2013popi.pdf), The People's Republic of China's [Personal information protection law](http://en.npc.gov.cn.cdurl.cn/2021-12/29/c_694559.htm).
524
+
525
+ - <a name="sensitive-characteristics">**Sensitive characteristics:**</a> This includes specifically protected categories in human rights (see [UHDR, Article 2](https://www.un.org/sites/un2.un.org/files/2021/03/udhr.pdf)) and personal information regulation (see GDPR, [Article 9; Protection of Personal Information Act, Chapter 1](https://www.gov.za/sites/default/files/gcis_document/201409/3706726-11act4of2013popi.pdf))
526
+
527
+ - <a name="deception">**Deception:**</a> Doing something to intentionally mislead individuals to believe something that is false, such as by creating deadbots or chatbots on social media posing as real people, or generating text documents without making consumers aware that the text is machine generated.
528
+
529
+ </details>
530
+ <p>&nbsp;</p>
531
+
532
+ ## More Information
533
+
534
+ <details>
535
+ <summary>Click to expand</summary><br/>
536
+
537
+ ### Dataset Creation
538
+
539
+ Blog post detailing the design choices during the dataset creation: https://bigscience.huggingface.co/blog/building-a-tb-scale-multilingual-dataset-for-language-modeling
540
+
541
+ ### Technical Specifications
542
+
543
+ Blog post summarizing how the architecture, size, shape, and pre-training duration where selected: https://bigscience.huggingface.co/blog/what-language-model-to-train-if-you-have-two-million-gpu-hours
544
+
545
+ More details on the architecture/optimizer: https://github.com/bigscience-workshop/bigscience/tree/master/train/tr11-176B-ml
546
+
547
+ Blog post on the hardware/engineering side: https://bigscience.huggingface.co/blog/which-hardware-to-train-a-176b-parameters-model
548
+
549
+ Details on the distributed setup used for the training: https://github.com/bigscience-workshop/bigscience/tree/master/train/tr11-176B-ml
550
+
551
+ Tensorboard updated during the training: https://huggingface.co/bigscience/tr11-176B-ml-logs/tensorboard#scalars&tagFilter=loss
552
+
553
+ Insights on how to approach training, negative results: https://github.com/bigscience-workshop/bigscience/blob/master/train/lessons-learned.md
554
+
555
+ Details on the obstacles overcome during the preparation on the engineering side (instabilities, optimization of training throughput, so many technical tricks and questions): https://github.com/bigscience-workshop/bigscience/blob/master/train/tr11-176B-ml/chronicles.md
556
+
557
+ ### Initial Results
558
+
559
+ Initial prompting experiments using interim checkpoints: https://huggingface.co/spaces/bigscience/bloom-book
560
+
561
+ </details>
562
+ <p>&nbsp;</p>
563
+
564
+ ## Model Card Authors
565
+ *Ordered roughly chronologically and by amount of time spent.*
566
+
567
+ Margaret Mitchell, Giada Pistilli, Yacine Jernite, Ezinwanne Ozoani, Marissa Gerchick, Nazneen Rajani, Sasha Luccioni, Irene Solaiman, Maraim Masoud, Somaieh Nikpoor, Carlos Muñoz Ferrandis, Stas Bekman, Christopher Akiki, Danish Contractor, David Lansky, Angelina McMillan-Major, Tristan Thrush, Suzana Ilić, Gérard Dupont, Shayne Longpre, Manan Dey, Stella Biderman, Douwe Kiela, Emi Baylor, Teven Le Scao, Aaron Gokaslan, Julien Launay, Niklas Muennighoff
568
+
569
+