Transformers
GGUF
mergekit
Merge
Inference Endpoints
aashish1904 commited on
Commit
5051f7e
β€’
1 Parent(s): e4c7f0f

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +149 -0
README.md ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+
4
+ base_model:
5
+ - 01-ai/Yi-Coder-9B-Chat
6
+ - 01-ai/Yi-Coder-9B
7
+ library_name: transformers
8
+ tags:
9
+ - mergekit
10
+ - merge
11
+ license: apache-2.0
12
+
13
+ ---
14
+
15
+ [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
16
+
17
+
18
+ # QuantFactory/Yi-Coder-9B-Chat-Instruct-TIES-GGUF
19
+ This is quantized version of [BenevolenceMessiah/Yi-Coder-9B-Chat-Instruct-TIES](https://huggingface.co/BenevolenceMessiah/Yi-Coder-9B-Chat-Instruct-TIES) created using llama.cpp
20
+
21
+ # Original Model Card
22
+
23
+ # merge
24
+
25
+ This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
26
+
27
+ ## Merge Details
28
+ ### Merge Method
29
+
30
+ This model was merged using the [TIES](https://arxiv.org/abs/2306.01708) merge method using [01-ai/Yi-Coder-9B](https://huggingface.co/01-ai/Yi-Coder-9B) as a base.
31
+
32
+ ### Models Merged
33
+
34
+ The following models were included in the merge:
35
+ * [01-ai/Yi-Coder-9B-Chat](https://huggingface.co/01-ai/Yi-Coder-9B-Chat)
36
+
37
+ ### Configuration
38
+
39
+ The following YAML configuration was used to produce this model:
40
+
41
+ ```yaml
42
+ models:
43
+ - model: 01-ai/Yi-Coder-9B
44
+ parameters:
45
+ density: 0.5
46
+ weight: 0.5
47
+ - model: 01-ai/Yi-Coder-9B-Chat
48
+ parameters:
49
+ density: 0.5
50
+ weight: 0.5
51
+
52
+ merge_method: ties
53
+ base_model: 01-ai/Yi-Coder-9B
54
+ parameters:
55
+ normalize: false
56
+ int8_mask: true
57
+ dtype: float16
58
+ ```
59
+ <picture>
60
+ <img src="https://raw.githubusercontent.com/01-ai/Yi/main/assets/img/Yi_logo_icon_light.svg" width="120px">
61
+ </picture>
62
+
63
+ </div>
64
+
65
+ <p align="center">
66
+ <a href="https://github.com/01-ai">πŸ™ GitHub</a> β€’
67
+ <a href="https://discord.gg/hYUwWddeAu">πŸ‘Ύ Discord</a> β€’
68
+ <a href="https://twitter.com/01ai_yi">🐀 Twitter</a> β€’
69
+ <a href="https://github.com/01-ai/Yi-1.5/issues/2">πŸ’¬ WeChat</a>
70
+ <br/>
71
+ <a href="https://arxiv.org/abs/2403.04652">πŸ“ Paper</a> β€’
72
+ <a href="https://01-ai.github.io/">πŸ’ͺ Tech Blog</a> β€’
73
+ <a href="https://github.com/01-ai/Yi/tree/main?tab=readme-ov-file#faq">πŸ™Œ FAQ</a> β€’
74
+ <a href="https://github.com/01-ai/Yi/tree/main?tab=readme-ov-file#learning-hub">πŸ“— Learning Hub</a>
75
+ </p>
76
+
77
+ # Intro
78
+
79
+ Yi-Coder is a series of open-source code language models that delivers state-of-the-art coding performance with fewer than 10 billion parameters.
80
+
81
+ Key features:
82
+ - Excelling in long-context understanding with a maximum context length of 128K tokens.
83
+ - Supporting 52 major programming languages:
84
+ ```bash
85
+ 'java', 'markdown', 'python', 'php', 'javascript', 'c++', 'c#', 'c', 'typescript', 'html', 'go', 'java_server_pages', 'dart', 'objective-c', 'kotlin', 'tex', 'swift', 'ruby', 'sql', 'rust', 'css', 'yaml', 'matlab', 'lua', 'json', 'shell', 'visual_basic', 'scala', 'rmarkdown', 'pascal', 'fortran', 'haskell', 'assembly', 'perl', 'julia', 'cmake', 'groovy', 'ocaml', 'powershell', 'elixir', 'clojure', 'makefile', 'coffeescript', 'erlang', 'lisp', 'toml', 'batchfile', 'cobol', 'dockerfile', 'r', 'prolog', 'verilog'
86
+ ```
87
+
88
+ For model details and benchmarks, see [Yi-Coder blog](https://01-ai.github.io/) and [Yi-Coder README](https://github.com/01-ai/Yi-Coder).
89
+
90
+ <p align="left">
91
+ <img src="https://github.com/01-ai/Yi/blob/main/assets/img/coder/yi-coder-calculator-demo.gif?raw=true" alt="demo1" width="500"/>
92
+ </p>
93
+
94
+ # Models
95
+
96
+ | Name | Type | Length | Download |
97
+ |--------------------|------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
98
+ | Yi-Coder-9B-Chat | Chat | 128K | [πŸ€— Hugging Face](https://huggingface.co/01-ai/Yi-Coder-9B-Chat) β€’ [πŸ€– ModelScope](https://www.modelscope.cn/models/01ai/Yi-Coder-9B-Chat) β€’ [🟣 wisemodel](https://wisemodel.cn/models/01.AI/Yi-Coder-9B-Chat) |
99
+ | Yi-Coder-1.5B-Chat | Chat | 128K | [πŸ€— Hugging Face](https://huggingface.co/01-ai/Yi-Coder-1.5B-Chat) β€’ [πŸ€– ModelScope](https://www.modelscope.cn/models/01ai/Yi-Coder-1.5B-Chat) β€’ [🟣 wisemodel](https://wisemodel.cn/models/01.AI/Yi-Coder-1.5B-Chat) |
100
+ | Yi-Coder-9B | Base | 128K | [πŸ€— Hugging Face](https://huggingface.co/01-ai/Yi-Coder-9B) β€’ [πŸ€– ModelScope](https://www.modelscope.cn/models/01ai/Yi-Coder-9B) β€’ [🟣 wisemodel](https://wisemodel.cn/models/01.AI/Yi-Coder-9B) |
101
+ | Yi-Coder-1.5B | Base | 128K | [πŸ€— Hugging Face](https://huggingface.co/01-ai/Yi-Coder-1.5B) β€’ [πŸ€– ModelScope](https://www.modelscope.cn/models/01ai/Yi-Coder-1.5B) β€’ [🟣 wisemodel](https://wisemodel.cn/models/01.AI/Yi-Coder-1.5B) |
102
+ | |
103
+
104
+ # Benchmarks
105
+
106
+ As illustrated in the figure below, Yi-Coder-9B-Chat achieved an impressive 23% pass rate in LiveCodeBench, making it the only model with under 10B parameters to surpass 20%. It also outperforms DeepSeekCoder-33B-Ins at 22.3%, CodeGeex4-9B-all at 17.8%, CodeLLama-34B-Ins at 13.3%, and CodeQwen1.5-7B-Chat at 12%.
107
+
108
+ <p align="left">
109
+ <img src="https://github.com/01-ai/Yi/blob/main/assets/img/coder/bench1.webp?raw=true" alt="bench1" width="1000"/>
110
+ </p>
111
+
112
+ # Quick Start
113
+
114
+ You can use transformers to run inference with Yi-Coder models (both chat and base versions) as follows:
115
+ ```python
116
+ from transformers import AutoTokenizer, AutoModelForCausalLM
117
+
118
+ device = "cuda" # the device to load the model onto
119
+ model_path = "01-ai/Yi-Coder-9B-Chat"
120
+
121
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
122
+ model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto").eval()
123
+
124
+ prompt = "Write a quick sort algorithm."
125
+ messages = [
126
+ {"role": "system", "content": "You are a helpful assistant."},
127
+ {"role": "user", "content": prompt}
128
+ ]
129
+ text = tokenizer.apply_chat_template(
130
+ messages,
131
+ tokenize=False,
132
+ add_generation_prompt=True
133
+ )
134
+ model_inputs = tokenizer([text], return_tensors="pt").to(device)
135
+
136
+ generated_ids = model.generate(
137
+ model_inputs.input_ids,
138
+ max_new_tokens=1024,
139
+ eos_token_id=tokenizer.eos_token_id
140
+ )
141
+ generated_ids = [
142
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
143
+ ]
144
+
145
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
146
+ print(response)
147
+ ```
148
+
149
+ For getting up and running with Yi-Coder series models quickly, see [Yi-Coder README](https://github.com/01-ai/Yi-Coder).