--- license: cc-by-nc-sa-4.0 pipeline_tag: text-generation base_model: SciPhi/Triplex --- ![](https://cdn.discordapp.com/attachments/791342238541152306/1264099835221381251/image.png?ex=669ca436&is=669b52b6&hm=129f56187c31e1ed22cbd1bcdbc677a2baeea5090761d2f1a458c8b1ec7cca4b&) # QuantFactory/Triplex-GGUF This is quantized version of [SciPhi/Triplex](https://huggingface.co./SciPhi/Triplex) created using llama.cpp # Original Model Card # Triplex: a SOTA LLM for knowledge graph construction. Knowledge graphs, like Microsoft's Graph RAG, enhance RAG methods but are expensive to build. Triplex offers a 98% cost reduction for knowledge graph creation, outperforming GPT-4 at 1/60th the cost and enabling local graph building with SciPhi's R2R. Triplex is a finetuned version of Phi3-3.8B for creating knowledge graphs from unstructured data developed by [SciPhi.AI](https://www.sciphi.ai). It works by extracting triplets - simple statements consisting of a subject, predicate, and object - from text or other data sources. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/668d8d7a2413acbd544530d1/kcUC5FDEoziMSEcjVHQ3-.png) ## Benchmark ![image/png](https://cdn-uploads.huggingface.co/production/uploads/668d8d7a2413acbd544530d1/xsZ2UPZE5mnTFvgAsQwtl.png) ## Usage: - **Blog:** [https://www.sciphi.ai/blog/triplex](https://www.sciphi.ai/blog/triplex) - **Demo:** [kg.sciphi.ai](https://kg.sciphi.ai) - **Cookbook:** [https://r2r-docs.sciphi.ai/cookbooks/knowledge-graph](https://r2r-docs.sciphi.ai/cookbooks/knowledge-graph) - **Python:** ```python import json from transformers import AutoModelForCausalLM, AutoTokenizer def triplextract(model, tokenizer, text, entity_types, predicates): input_format = """ **Entity Types:** {entity_types} **Predicates:** {predicates} **Text:** {text} """ message = input_format.format( entity_types = json.dumps({"entity_types": entity_types}), predicates = json.dumps({"predicates": predicates}), text = text) messages = [{'role': 'user', 'content': message}] input_ids = tokenizer.apply_chat_template(messages, add_generation_prompt = True, return_tensors="pt").to("cuda") output = tokenizer.decode(model.generate(input_ids=input_ids, max_length=2048)[0], skip_special_tokens=True) return output model = AutoModelForCausalLM.from_pretrained("sciphi/triplex", trust_remote_code=True).to('cuda').eval() tokenizer = AutoTokenizer.from_pretrained("sciphi/triplex", trust_remote_code=True) entity_types = [ "LOCATION", "POSITION", "DATE", "CITY", "COUNTRY", "NUMBER" ] predicates = [ "POPULATION", "AREA" ] text = """ San Francisco,[24] officially the City and County of San Francisco, is a commercial, financial, and cultural center in Northern California. With a population of 808,437 residents as of 2022, San Francisco is the fourth most populous city in the U.S. state of California behind Los Angeles, San Diego, and San Jose. """ prediction = triplextract(model, tokenizer, text, entity_types, predicates) print(prediction) ```