aashish1904
commited on
Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
|
4 |
+
license: cc-by-nc-sa-4.0
|
5 |
+
|
6 |
+
|
7 |
+
---
|
8 |
+
|
9 |
+
![](https://cdn.discordapp.com/attachments/791342238541152306/1264099835221381251/image.png?ex=669ca436&is=669b52b6&hm=129f56187c31e1ed22cbd1bcdbc677a2baeea5090761d2f1a458c8b1ec7cca4b&)
|
10 |
+
|
11 |
+
# QuantFactory/Triplex-GGUF
|
12 |
+
This is quantized version of [SciPhi/Triplex](https://huggingface.co/SciPhi/Triplex) created using llama.cpp
|
13 |
+
|
14 |
+
# Original Model Card
|
15 |
+
|
16 |
+
|
17 |
+
# Triplex: a SOTA LLM for knowledge graph construction.
|
18 |
+
|
19 |
+
Knowledge graphs, like Microsoft's Graph RAG, enhance RAG methods but are expensive to build. Triplex offers a 98% cost reduction for knowledge graph creation, outperforming GPT-4 at 1/60th the cost and enabling local graph building with SciPhi's R2R.
|
20 |
+
|
21 |
+
Triplex is a finetuned version of Phi3-3.8B for creating knowledge graphs from unstructured data developed by [SciPhi.AI](https://www.sciphi.ai). It works by extracting triplets - simple statements consisting of a subject, predicate, and object - from text or other data sources.
|
22 |
+
|
23 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/668d8d7a2413acbd544530d1/kcUC5FDEoziMSEcjVHQ3-.png)
|
24 |
+
|
25 |
+
## Benchmark
|
26 |
+
|
27 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/668d8d7a2413acbd544530d1/xsZ2UPZE5mnTFvgAsQwtl.png)
|
28 |
+
|
29 |
+
## Usage:
|
30 |
+
|
31 |
+
|
32 |
+
- **Blog:** [https://www.sciphi.ai/blog/triplex](https://www.sciphi.ai/blog/triplex)
|
33 |
+
- **Demo:** [kg.sciphi.ai](https://kg.sciphi.ai)
|
34 |
+
- **Cookbook:** [https://r2r-docs.sciphi.ai/cookbooks/knowledge-graph](https://r2r-docs.sciphi.ai/cookbooks/knowledge-graph)
|
35 |
+
- **Python:**
|
36 |
+
|
37 |
+
```python
|
38 |
+
import json
|
39 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
40 |
+
|
41 |
+
def triplextract(model, tokenizer, text, entity_types, predicates):
|
42 |
+
|
43 |
+
input_format = """
|
44 |
+
**Entity Types:**
|
45 |
+
{entity_types}
|
46 |
+
|
47 |
+
**Predicates:**
|
48 |
+
{predicates}
|
49 |
+
|
50 |
+
**Text:**
|
51 |
+
{text}
|
52 |
+
"""
|
53 |
+
|
54 |
+
message = input_format.format(
|
55 |
+
entity_types = json.dumps({"entity_types": entity_types}),
|
56 |
+
predicates = json.dumps({"predicates": predicates}),
|
57 |
+
text = text)
|
58 |
+
|
59 |
+
messages = [{'role': 'user', 'content': message}]
|
60 |
+
input_ids = tokenizer.apply_chat_template(messages, add_generation_prompt = True, return_tensors="pt").to("cuda")
|
61 |
+
output = tokenizer.decode(model.generate(input_ids=input_ids, max_length=2048)[0], skip_special_tokens=True)
|
62 |
+
return output
|
63 |
+
|
64 |
+
model = AutoModelForCausalLM.from_pretrained("sciphi/triplex", trust_remote_code=True).to('cuda').eval()
|
65 |
+
tokenizer = AutoTokenizer.from_pretrained("sciphi/triplex", trust_remote_code=True)
|
66 |
+
|
67 |
+
entity_types = [ "LOCATION", "POSITION", "DATE", "CITY", "COUNTRY", "NUMBER" ]
|
68 |
+
predicates = [ "POPULATION", "AREA" ]
|
69 |
+
text = """
|
70 |
+
San Francisco,[24] officially the City and County of San Francisco, is a commercial, financial, and cultural center in Northern California.
|
71 |
+
|
72 |
+
With a population of 808,437 residents as of 2022, San Francisco is the fourth most populous city in the U.S. state of California behind Los Angeles, San Diego, and San Jose.
|
73 |
+
"""
|
74 |
+
|
75 |
+
prediction = triplextract(model, tokenizer, text, entity_types, predicates)
|
76 |
+
print(prediction)
|
77 |
+
|
78 |
+
|
79 |
+
```
|