aashish1904 commited on
Commit
280ae81
·
verified ·
1 Parent(s): 5e27528

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +79 -0
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+
4
+ license: cc-by-nc-sa-4.0
5
+
6
+
7
+ ---
8
+
9
+ ![](https://cdn.discordapp.com/attachments/791342238541152306/1264099835221381251/image.png?ex=669ca436&is=669b52b6&hm=129f56187c31e1ed22cbd1bcdbc677a2baeea5090761d2f1a458c8b1ec7cca4b&)
10
+
11
+ # QuantFactory/Triplex-GGUF
12
+ This is quantized version of [SciPhi/Triplex](https://huggingface.co/SciPhi/Triplex) created using llama.cpp
13
+
14
+ # Original Model Card
15
+
16
+
17
+ # Triplex: a SOTA LLM for knowledge graph construction.
18
+
19
+ Knowledge graphs, like Microsoft's Graph RAG, enhance RAG methods but are expensive to build. Triplex offers a 98% cost reduction for knowledge graph creation, outperforming GPT-4 at 1/60th the cost and enabling local graph building with SciPhi's R2R.
20
+
21
+ Triplex is a finetuned version of Phi3-3.8B for creating knowledge graphs from unstructured data developed by [SciPhi.AI](https://www.sciphi.ai). It works by extracting triplets - simple statements consisting of a subject, predicate, and object - from text or other data sources.
22
+
23
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/668d8d7a2413acbd544530d1/kcUC5FDEoziMSEcjVHQ3-.png)
24
+
25
+ ## Benchmark
26
+
27
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/668d8d7a2413acbd544530d1/xsZ2UPZE5mnTFvgAsQwtl.png)
28
+
29
+ ## Usage:
30
+
31
+
32
+ - **Blog:** [https://www.sciphi.ai/blog/triplex](https://www.sciphi.ai/blog/triplex)
33
+ - **Demo:** [kg.sciphi.ai](https://kg.sciphi.ai)
34
+ - **Cookbook:** [https://r2r-docs.sciphi.ai/cookbooks/knowledge-graph](https://r2r-docs.sciphi.ai/cookbooks/knowledge-graph)
35
+ - **Python:**
36
+
37
+ ```python
38
+ import json
39
+ from transformers import AutoModelForCausalLM, AutoTokenizer
40
+
41
+ def triplextract(model, tokenizer, text, entity_types, predicates):
42
+
43
+ input_format = """
44
+ **Entity Types:**
45
+ {entity_types}
46
+
47
+ **Predicates:**
48
+ {predicates}
49
+
50
+ **Text:**
51
+ {text}
52
+ """
53
+
54
+ message = input_format.format(
55
+ entity_types = json.dumps({"entity_types": entity_types}),
56
+ predicates = json.dumps({"predicates": predicates}),
57
+ text = text)
58
+
59
+ messages = [{'role': 'user', 'content': message}]
60
+ input_ids = tokenizer.apply_chat_template(messages, add_generation_prompt = True, return_tensors="pt").to("cuda")
61
+ output = tokenizer.decode(model.generate(input_ids=input_ids, max_length=2048)[0], skip_special_tokens=True)
62
+ return output
63
+
64
+ model = AutoModelForCausalLM.from_pretrained("sciphi/triplex", trust_remote_code=True).to('cuda').eval()
65
+ tokenizer = AutoTokenizer.from_pretrained("sciphi/triplex", trust_remote_code=True)
66
+
67
+ entity_types = [ "LOCATION", "POSITION", "DATE", "CITY", "COUNTRY", "NUMBER" ]
68
+ predicates = [ "POPULATION", "AREA" ]
69
+ text = """
70
+ San Francisco,[24] officially the City and County of San Francisco, is a commercial, financial, and cultural center in Northern California.
71
+
72
+ With a population of 808,437 residents as of 2022, San Francisco is the fourth most populous city in the U.S. state of California behind Los Angeles, San Diego, and San Jose.
73
+ """
74
+
75
+ prediction = triplextract(model, tokenizer, text, entity_types, predicates)
76
+ print(prediction)
77
+
78
+
79
+ ```