File size: 5,717 Bytes
504bab5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
---
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.3
tags:
- generated_from_trainer
model-index:
- name: home/migel/tess-2.5-mistral-7B-phase-1
results: []
---
![](https://cdn.discordapp.com/attachments/791342238541152306/1264099835221381251/image.png?ex=669ca436&is=669b52b6&hm=129f56187c31e1ed22cbd1bcdbc677a2baeea5090761d2f1a458c8b1ec7cca4b&)
# QuantFactory/Tess-3-7B-SFT-GGUF
This is quantized version of [migtissera/Tess-3-7B-SFT](https://huggingface.co./migtissera/Tess-3-7B-SFT) created using llama.cpp
# Original Model Card
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
base_model: mistralai/Mistral-7B-v0.3
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
tokenizer_use_fast: false
load_in_8bit: false
load_in_4bit: false
strict: false
model_config:
datasets:
- path: /home/migel/ai_datasets/tess-v1.5b-chatml.jsonl
type: sharegpt
conversation: chatml
- path: /home/migel/ai_datasets/Tess-3.0/Tess-3.0-multi_turn_chatml.jsonl
type: sharegpt
conversation: chatml
- path: /home/migel/ai_datasets/Tess-3.0/Tess-3.0-single_turn_chatml.jsonl
type: sharegpt
conversation: chatml
chat_template: chatml
dataset_prepared_path: last_run_prepared_mistral
val_set_size: 0.0
output_dir: /home/migel/tess-2.5-mistral-7B-phase-1
resume_from_checkpoint: /home/migel/tess-2.5-mistral-7B-phase-1/checkpoint-440
auto_resume_from_checkpoints: true
sequence_len: 16384
sample_packing: true
pad_to_sequence_len: true
gradient_accumulation_steps: 4
micro_batch_size: 4
num_epochs: 1
logging_steps: 1
optimizer: adamw_8bit
lr_scheduler: constant
learning_rate: 1e-6
wandb_project: mistral-7b
wandb_watch:
wandb_run_id:
wandb_log_model:
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
saves_per_epoch: 10
evals_per_epoch: 10
save_total_limit: 3
save_steps:
eval_sample_packing: false
debug:
deepspeed: /home/migel/axolotl/deepspeed_configs/zero3_bf16.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<|im_start|>"
eos_token: "<|im_end|>"
pad_token: "<|end_of_text|>"
```
</details><br>
# Tess-3-7B-SFT
![Tess-3](https://huggingface.co./migtissera/Tess-v2.5-Qwen2-72B/resolve/main/Tess-v2.5.png)
Tess-3-7B is a finetuned version of the Mistral-7B-v0.3 base model. This version is the first phase of the final Tess-3 model, and have been trained with supervised fine-tuning (SFT) on a curated dataset of ~500K samples. The total SFT dataset contains about 1B tokens.
This model has 32K context length.
# Sample code to run inference
Note that this model uses ChatML prompt format.
```python
import torch, json
from transformers import AutoModelForCausalLM, AutoTokenizer
from stop_word import StopWordCriteria
model_path = "migtissera/Tess-3-7B-SFT"
output_file_path = "/home/migel/conversations.jsonl"
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.float16,
device_map="auto",
load_in_4bit=False,
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
terminators = [
tokenizer.convert_tokens_to_ids("<|im_end|>")
]
def generate_text(instruction):
tokens = tokenizer.encode(instruction)
tokens = torch.LongTensor(tokens).unsqueeze(0)
tokens = tokens.to("cuda")
instance = {
"input_ids": tokens,
"top_p": 1.0,
"temperature": 0.75,
"generate_len": 1024,
"top_k": 50,
}
length = len(tokens[0])
with torch.no_grad():
rest = model.generate(
input_ids=tokens,
max_length=length + instance["generate_len"],
use_cache=True,
do_sample=True,
top_p=instance["top_p"],
temperature=instance["temperature"],
top_k=instance["top_k"],
num_return_sequences=1,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=terminators,
)
output = rest[0][length:]
string = tokenizer.decode(output, skip_special_tokens=True)
return f"{string}"
conversation = f"""<|im_start|>system\nYou are Tesoro, a helful AI assitant. You always provide detailed answers without hesitation.<|im_end|>\n<|im_start|>user\n"""
while True:
user_input = input("You: ")
llm_prompt = f"{conversation}{user_input}<|im_end|>\n<|im_start|>assistant\n"
answer = generate_text(llm_prompt)
print(answer)
conversation = f"{llm_prompt}{answer}\n"
json_data = {"prompt": user_input, "answer": answer}
with open(output_file_path, "a") as output_file:
output_file.write(json.dumps(json_data) + "\n")
```
# Join My General AI Discord (NeuroLattice):
https://discord.gg/Hz6GrwGFKD
# Limitations & Biases:
While this model aims for accuracy, it can occasionally produce inaccurate or misleading results.
Despite diligent efforts in refining the pretraining data, there remains a possibility for the generation of inappropriate, biased, or offensive content.
Exercise caution and cross-check information when necessary. This is an uncensored model.
|